Spaces:
Runtime error
Runtime error
JerryFan011018
commited on
Upload app.py
Browse files
app.py
ADDED
@@ -0,0 +1,210 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) 2023-2024, Zexin He
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# https://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
|
15 |
+
|
16 |
+
import os
|
17 |
+
from PIL import Image
|
18 |
+
import numpy as np
|
19 |
+
import gradio as gr
|
20 |
+
|
21 |
+
|
22 |
+
def assert_input_image(input_image):
|
23 |
+
if input_image is None:
|
24 |
+
raise gr.Error("No image selected or uploaded!")
|
25 |
+
|
26 |
+
def prepare_working_dir():
|
27 |
+
import tempfile
|
28 |
+
working_dir = tempfile.TemporaryDirectory()
|
29 |
+
return working_dir
|
30 |
+
|
31 |
+
def init_preprocessor():
|
32 |
+
from openlrm.utils.preprocess import Preprocessor
|
33 |
+
global preprocessor
|
34 |
+
preprocessor = Preprocessor()
|
35 |
+
|
36 |
+
def preprocess_fn(image_in: np.ndarray, remove_bg: bool, recenter: bool, working_dir):
|
37 |
+
image_raw = os.path.join(working_dir.name, "raw.png")
|
38 |
+
with Image.fromarray(image_in) as img:
|
39 |
+
img.save(image_raw)
|
40 |
+
image_out = os.path.join(working_dir.name, "rembg.png")
|
41 |
+
success = preprocessor.preprocess(image_path=image_raw, save_path=image_out, rmbg=remove_bg, recenter=recenter)
|
42 |
+
assert success, f"Failed under preprocess_fn!"
|
43 |
+
return image_out
|
44 |
+
|
45 |
+
|
46 |
+
def demo_openlrm(infer_impl):
|
47 |
+
|
48 |
+
def core_fn(image: str, source_cam_dist: float, working_dir):
|
49 |
+
dump_video_path = os.path.join(working_dir.name, "output.mp4")
|
50 |
+
dump_mesh_path = os.path.join(working_dir.name, "output.ply")
|
51 |
+
infer_impl(
|
52 |
+
image_path=image,
|
53 |
+
source_cam_dist=source_cam_dist,
|
54 |
+
export_video=True,
|
55 |
+
export_mesh=False,
|
56 |
+
dump_video_path=dump_video_path,
|
57 |
+
dump_mesh_path=dump_mesh_path,
|
58 |
+
)
|
59 |
+
return dump_video_path
|
60 |
+
|
61 |
+
def example_fn(image: np.ndarray):
|
62 |
+
from gradio.utils import get_cache_folder
|
63 |
+
working_dir = get_cache_folder()
|
64 |
+
image = preprocess_fn(
|
65 |
+
image_in=image,
|
66 |
+
remove_bg=True,
|
67 |
+
recenter=True,
|
68 |
+
working_dir=working_dir,
|
69 |
+
)
|
70 |
+
video = core_fn(
|
71 |
+
image=image,
|
72 |
+
source_cam_dist=2.0,
|
73 |
+
working_dir=working_dir,
|
74 |
+
)
|
75 |
+
return image, video
|
76 |
+
|
77 |
+
|
78 |
+
_TITLE = '''OpenLRM: Open-Source Large Reconstruction Models'''
|
79 |
+
|
80 |
+
_DESCRIPTION = '''
|
81 |
+
<div>
|
82 |
+
<a style="display:inline-block" href='https://github.com/3DTopia/OpenLRM'><img src='https://img.shields.io/github/stars/3DTopia/OpenLRM?style=social'/></a>
|
83 |
+
<a style="display:inline-block; margin-left: .5em" href="https://huggingface.co/zxhezexin"><img src='https://img.shields.io/badge/Model-Weights-blue'/></a>
|
84 |
+
</div>
|
85 |
+
OpenLRM is an open-source implementation of Large Reconstruction Models.
|
86 |
+
|
87 |
+
<strong>Image-to-3D in 10 seconds with A100!</strong>
|
88 |
+
|
89 |
+
<strong>Disclaimer:</strong> This demo uses `openlrm-mix-base-1.1` model with 288x288 rendering resolution here for a quick demonstration.
|
90 |
+
'''
|
91 |
+
|
92 |
+
with gr.Blocks(analytics_enabled=False) as demo:
|
93 |
+
|
94 |
+
# HEADERS
|
95 |
+
with gr.Row():
|
96 |
+
with gr.Column(scale=1):
|
97 |
+
gr.Markdown('# ' + _TITLE)
|
98 |
+
with gr.Row():
|
99 |
+
gr.Markdown(_DESCRIPTION)
|
100 |
+
|
101 |
+
# DISPLAY
|
102 |
+
with gr.Row():
|
103 |
+
|
104 |
+
with gr.Column(variant='panel', scale=1):
|
105 |
+
with gr.Tabs(elem_id="openlrm_input_image"):
|
106 |
+
with gr.TabItem('Input Image'):
|
107 |
+
with gr.Row():
|
108 |
+
input_image = gr.Image(label="Input Image", image_mode="RGBA", width="auto", sources="upload", type="numpy", elem_id="content_image")
|
109 |
+
|
110 |
+
with gr.Column(variant='panel', scale=1):
|
111 |
+
with gr.Tabs(elem_id="openlrm_processed_image"):
|
112 |
+
with gr.TabItem('Processed Image'):
|
113 |
+
with gr.Row():
|
114 |
+
processed_image = gr.Image(label="Processed Image", image_mode="RGBA", type="filepath", elem_id="processed_image", width="auto", interactive=False)
|
115 |
+
|
116 |
+
with gr.Column(variant='panel', scale=1):
|
117 |
+
with gr.Tabs(elem_id="openlrm_render_video"):
|
118 |
+
with gr.TabItem('Rendered Video'):
|
119 |
+
with gr.Row():
|
120 |
+
output_video = gr.Video(label="Rendered Video", format="mp4", width="auto", autoplay=True)
|
121 |
+
|
122 |
+
# SETTING
|
123 |
+
with gr.Row():
|
124 |
+
with gr.Column(variant='panel', scale=1):
|
125 |
+
with gr.Tabs(elem_id="openlrm_attrs"):
|
126 |
+
with gr.TabItem('Settings'):
|
127 |
+
with gr.Column(variant='panel'):
|
128 |
+
gr.Markdown(
|
129 |
+
"""
|
130 |
+
<strong>Best Practice</strong>:
|
131 |
+
Centered objects in reasonable sizes. Try adjusting source camera distances.
|
132 |
+
"""
|
133 |
+
)
|
134 |
+
checkbox_rembg = gr.Checkbox(True, label='Remove background')
|
135 |
+
checkbox_recenter = gr.Checkbox(True, label='Recenter the object')
|
136 |
+
slider_cam_dist = gr.Slider(1.0, 3.5, value=2.0, step=0.1, label="Source Camera Distance")
|
137 |
+
submit = gr.Button('Generate', elem_id="openlrm_generate", variant='primary')
|
138 |
+
|
139 |
+
# EXAMPLES
|
140 |
+
with gr.Row():
|
141 |
+
examples = [
|
142 |
+
['assets/sample_input/owl.png'],
|
143 |
+
['assets/sample_input/building.png'],
|
144 |
+
['assets/sample_input/mailbox.png'],
|
145 |
+
['assets/sample_input/fire.png'],
|
146 |
+
['assets/sample_input/girl.png'],
|
147 |
+
['assets/sample_input/lamp.png'],
|
148 |
+
['assets/sample_input/hydrant.png'],
|
149 |
+
['assets/sample_input/hotdogs.png'],
|
150 |
+
['assets/sample_input/traffic.png'],
|
151 |
+
['assets/sample_input/ceramic.png'],
|
152 |
+
]
|
153 |
+
gr.Examples(
|
154 |
+
examples=examples,
|
155 |
+
inputs=[input_image],
|
156 |
+
outputs=[processed_image, output_video],
|
157 |
+
fn=example_fn,
|
158 |
+
cache_examples=bool(os.getenv('SPACE_ID')),
|
159 |
+
examples_per_page=20,
|
160 |
+
)
|
161 |
+
|
162 |
+
working_dir = gr.State()
|
163 |
+
submit.click(
|
164 |
+
fn=assert_input_image,
|
165 |
+
inputs=[input_image],
|
166 |
+
queue=False,
|
167 |
+
).success(
|
168 |
+
fn=prepare_working_dir,
|
169 |
+
outputs=[working_dir],
|
170 |
+
queue=False,
|
171 |
+
).success(
|
172 |
+
fn=preprocess_fn,
|
173 |
+
inputs=[input_image, checkbox_rembg, checkbox_recenter, working_dir],
|
174 |
+
outputs=[processed_image],
|
175 |
+
).success(
|
176 |
+
fn=core_fn,
|
177 |
+
inputs=[processed_image, slider_cam_dist, working_dir],
|
178 |
+
outputs=[output_video],
|
179 |
+
)
|
180 |
+
|
181 |
+
demo.queue()
|
182 |
+
demo.launch()
|
183 |
+
|
184 |
+
|
185 |
+
def launch_gradio_app():
|
186 |
+
|
187 |
+
os.environ.update({
|
188 |
+
"APP_ENABLED": "1",
|
189 |
+
"APP_MODEL_NAME": "zxhezexin/openlrm-mix-base-1.1",
|
190 |
+
"APP_INFER": "./configs/infer-gradio.yaml",
|
191 |
+
"APP_TYPE": "infer.lrm",
|
192 |
+
"NUMBA_THREADING_LAYER": 'omp',
|
193 |
+
})
|
194 |
+
|
195 |
+
from openlrm.runners import REGISTRY_RUNNERS
|
196 |
+
from openlrm.runners.infer.base_inferrer import Inferrer
|
197 |
+
InferrerClass : Inferrer = REGISTRY_RUNNERS[os.getenv("APP_TYPE")]
|
198 |
+
with InferrerClass() as inferrer:
|
199 |
+
init_preprocessor()
|
200 |
+
if not bool(os.getenv('SPACE_ID')):
|
201 |
+
from openlrm.utils.proxy import no_proxy
|
202 |
+
demo = no_proxy(demo_openlrm)
|
203 |
+
else:
|
204 |
+
demo = demo_openlrm
|
205 |
+
demo(infer_impl=inferrer.infer_single)
|
206 |
+
|
207 |
+
|
208 |
+
if __name__ == '__main__':
|
209 |
+
|
210 |
+
launch_gradio_app()
|