Spaces:
Runtime error
Runtime error
import gradio as gr | |
import numpy as np | |
import pandas as pd | |
import plotly.graph_objects as go | |
from datasets import load_dataset | |
from evaluate.utils import parse_readme | |
from scipy.stats import gaussian_kde, spearmanr | |
import generate_annotated_diffs | |
from api_wrappers import hf_data_loader | |
from generation_steps.metrics_analysis import AGGR_METRICS, edit_distance_fn | |
colors = { | |
"Expert-labeled": "#C19C0B", | |
"Synthetic Backward": "#913632", | |
"Synthetic Forward": "#58136a", | |
"Full": "#000000", | |
} | |
METRICS = { | |
"Edit Distance": "editdist", | |
"Edit Similarity": "editsim", | |
"BLEU": "bleu", | |
"METEOR": "meteor", | |
"ROUGE-1": "rouge1", | |
"ROUGE-2": "rouge2", | |
"ROUGE-L": "rougeL", | |
"BERTScore": "bertscore", | |
"ChrF": "chrF", | |
} | |
df_related = generate_annotated_diffs.data_with_annotated_diffs() | |
def golden(): | |
return df_related.loc[(df_related["G_type"] == "initial") & (df_related["E_type"] == "expert_labeled")].reset_index( | |
drop=True | |
) | |
def backward(): | |
return df_related.loc[ | |
(df_related["G_type"] == "synthetic_backward") & (df_related["E_type"] == "expert_labeled") | |
].reset_index(drop=True) | |
def forward(): | |
return df_related.loc[ | |
(df_related["G_type"] == "initial") & (df_related["E_type"] == "synthetic_forward") | |
].reset_index(drop=True) | |
def forward_from_backward(): | |
return df_related.loc[ | |
(df_related.G_type == "synthetic_backward") | |
& (df_related.E_type.isin(["synthetic_forward", "synthetic_forward_from_backward"])) | |
].reset_index(drop=True) | |
n_diffs_manual = len(golden()) | |
n_diffs_synthetic_backward = len(backward()) | |
n_diffs_synthetic_forward = len(forward()) | |
n_diffs_synthetic_forward_backward = len(forward_from_backward()) | |
def update_dataset_view(diff_idx, df): | |
diff_idx -= 1 | |
return ( | |
df.iloc[diff_idx]["annotated_diff"], | |
df.iloc[diff_idx]["commit_msg_start"] if "commit_msg_start" in df.columns else df.iloc[diff_idx]["G_text"], | |
df.iloc[diff_idx]["commit_msg_end"] if "commit_msg_end" in df.columns else df.iloc[diff_idx]["E_text"], | |
f"https://github.com/{df.iloc[diff_idx]['repo']}/commit/{df.iloc[diff_idx]['hash']}", | |
) | |
def update_dataset_view_manual(diff_idx): | |
return update_dataset_view(diff_idx, golden()) | |
def update_dataset_view_synthetic_backward(diff_idx): | |
return update_dataset_view(diff_idx, backward()) | |
def update_dataset_view_synthetic_forward(diff_idx): | |
return update_dataset_view(diff_idx, forward()) | |
def update_dataset_view_synthetic_forward_backward(diff_idx): | |
return update_dataset_view(diff_idx, forward_from_backward()) | |
def number_of_pairs_plot(): | |
related_plot_dict = { | |
"Full": df_related, | |
"Synthetic Backward": backward(), | |
"Synthetic Forward": pd.concat([forward(), forward_from_backward()], axis=0, ignore_index=True), | |
"Expert-labeled": golden(), | |
} | |
df_unrelated = hf_data_loader.load_synthetic_as_pandas() | |
df_unrelated = df_unrelated.loc[~df_unrelated.is_related].copy() | |
unrelated_plot_dict = { | |
"Full": df_unrelated, | |
"Synthetic Backward": df_unrelated.loc[ | |
(df_unrelated["G_type"] == "synthetic_backward") | |
& (~df_unrelated.E_type.isin(["synthetic_forward", "synthetic_forward_from_backward"])) | |
], | |
"Synthetic Forward": df_unrelated.loc[ | |
((df_unrelated["G_type"] == "initial") & (df_unrelated["E_type"] == "synthetic_forward")) | |
| ( | |
(df_unrelated["G_type"] == "synthetic_backward") | |
& (df_unrelated["E_type"].isin(["synthetic_forward", "synthetic_forward_from_backward"])) | |
) | |
], | |
"Expert-labeled": df_unrelated.loc[ | |
(df_unrelated.G_type == "initial") & (df_unrelated.E_type == "expert_labeled") | |
], | |
} | |
traces = [] | |
for split in related_plot_dict.keys(): | |
related_count = len(related_plot_dict[split]) | |
unrelated_count = len(unrelated_plot_dict[split]) | |
traces.append( | |
go.Bar( | |
name=f"{split} - Related pairs", | |
x=[split], | |
y=[related_count], | |
marker=dict( | |
color=colors[split], | |
), | |
) | |
) | |
traces.append( | |
go.Bar( | |
name=f"{split} - Conditionally independent pairs", | |
x=[split], | |
y=[unrelated_count], | |
marker=dict( | |
color=colors[split], | |
pattern=dict( | |
shape="/", # Crosses | |
fillmode="overlay", | |
solidity=0.5, | |
), | |
), | |
) | |
) | |
fig = go.Figure(data=traces) | |
fig.update_layout( | |
barmode="stack", | |
bargap=0.2, | |
xaxis=dict(title="Split", showgrid=True, gridcolor="lightgrey"), | |
yaxis=dict(title="Number of Examples", showgrid=True, gridcolor="lightgrey"), | |
legend=dict(title="Pair Type", orientation="h", yanchor="bottom", y=1.02, xanchor="right", x=1), | |
plot_bgcolor="rgba(0,0,0,0)", | |
paper_bgcolor="rgba(0,0,0,0)", | |
width=1100, | |
) | |
return fig | |
def edit_distance_plot(): | |
df_edit_distance = { | |
"Full": [edit_distance_fn(pred=row["G_text"], ref=row["E_text"]) for _, row in df_related.iterrows()], | |
"Synthetic Backward": [ | |
edit_distance_fn(pred=row["G_text"], ref=row["E_text"]) for _, row in backward().iterrows() | |
], | |
"Synthetic Forward": [ | |
edit_distance_fn(pred=row["G_text"], ref=row["E_text"]) | |
for _, row in pd.concat([forward(), forward_from_backward()], axis=0, ignore_index=True).iterrows() | |
], | |
"Expert-labeled": [edit_distance_fn(pred=row["G_text"], ref=row["E_text"]) for _, row in golden().iterrows()], | |
} | |
traces = [] | |
for key in df_edit_distance: | |
kde_x = np.linspace(0, 1200, 1000) | |
kde = gaussian_kde(df_edit_distance[key]) | |
kde_line = go.Scatter(x=kde_x, y=kde(kde_x), mode="lines", name=key, line=dict(color=colors[key], width=5)) | |
traces.append(kde_line) | |
fig = go.Figure(data=traces) | |
fig.update_layout( | |
bargap=0.1, | |
xaxis=dict(title=dict(text="Edit Distance"), range=[0, 1200], showgrid=True, gridcolor="lightgrey"), | |
yaxis=dict( | |
title=dict(text="Probability Density"), | |
range=[0, 0.004], | |
showgrid=True, | |
gridcolor="lightgrey", | |
tickvals=[0.0005, 0.001, 0.0015, 0.002, 0.0025, 0.003, 0.0035, 0.004], | |
tickformat=".4f", | |
), | |
plot_bgcolor="rgba(0,0,0,0)", | |
paper_bgcolor="rgba(0,0,0,0)", | |
width=1100, | |
) | |
return fig | |
def get_correlations_table(online_metric_name: str) -> pd.DataFrame: | |
df = load_dataset( | |
"JetBrains-Research/synthetic-commit-msg-edits", "all_pairs_with_metrics_other_online_metrics", split="train" | |
).to_pandas() | |
corr_df = ( | |
df.loc[~df.is_related] | |
.groupby(["G_text", "G_type", "hash", "repo"] + [f"online_{online_metric_name}"]) | |
.apply(lambda g: g.to_dict(orient="records"), include_groups=False) | |
.reset_index(name="unrelated_pairs") | |
.copy() | |
) | |
_ = corr_df.copy() | |
for metric in AGGR_METRICS: | |
if metric in ["editdist"]: | |
_[metric] = _.unrelated_pairs.apply(lambda pairs: min(pair[metric] for pair in pairs)) | |
else: | |
_[metric] = _.unrelated_pairs.apply(lambda pairs: max(pair[metric] for pair in pairs)) | |
results = [] | |
for metric in AGGR_METRICS: | |
x = _[metric].to_numpy() | |
y = _[f"online_{online_metric_name}"].to_numpy() | |
corr, p_value = spearmanr(x, y) | |
results.append({"metric": metric, "corr": corr, "p_value": p_value}) | |
__ = pd.DataFrame(results) | |
__["p_value"] = ["< 0.05" if p < 0.05 else p for p in __.p_value] | |
__["corr_abs"] = abs(__["corr"]) | |
__["corr"] = __["corr"].round(2) | |
__["metric"] = __["metric"].map({v: k for k, v in METRICS.items()}) | |
return ( | |
__.sort_values(by=["corr_abs"], ascending=False) | |
.drop(columns=["corr_abs"]) | |
.rename(columns={"metric": "Metric m", "corr": "Correlation Q(m, m*)", "p_value": "p-value"}) | |
) | |
force_light_theme_js_func = """ | |
function refresh() { | |
const url = new URL(window.location); | |
if (url.searchParams.get('__theme') !== 'light') { | |
url.searchParams.set('__theme', 'light'); | |
window.location.href = url.href; | |
} | |
} | |
""" | |
if __name__ == "__main__": | |
with gr.Blocks(theme=gr.themes.Soft(), js=force_light_theme_js_func) as application: | |
gr.Markdown(parse_readme("README.md")) | |
def dataset_view_tab(n_items): | |
slider = gr.Slider(minimum=1, maximum=n_items, step=1, value=1, label=f"Sample number (total: {n_items})") | |
diff_view = gr.Highlightedtext(combine_adjacent=True, color_map={"+": "green", "-": "red"}) | |
start_view = gr.Textbox(interactive=False, label="Initial message G", container=True) | |
end_view = gr.Textbox(interactive=False, label="Edited message E", container=True) | |
link_view = gr.Markdown() | |
view = [diff_view, start_view, end_view, link_view] | |
return slider, view | |
with gr.Tab("Examples Exploration"): | |
with gr.Tab("Manual"): | |
slider_manual, view_manual = dataset_view_tab(n_diffs_manual) | |
slider_manual.change(update_dataset_view_manual, inputs=slider_manual, outputs=view_manual) | |
with gr.Tab("Synthetic Backward"): | |
slider_synthetic_backward, view_synthetic_backward = dataset_view_tab(n_diffs_synthetic_backward) | |
slider_synthetic_backward.change( | |
update_dataset_view_synthetic_backward, | |
inputs=slider_synthetic_backward, | |
outputs=view_synthetic_backward, | |
) | |
with gr.Tab("Synthetic Forward (from initial)"): | |
slider_synthetic_forward, view_synthetic_forward = dataset_view_tab(n_diffs_synthetic_forward) | |
slider_synthetic_forward.change( | |
update_dataset_view_synthetic_forward, | |
inputs=slider_synthetic_forward, | |
outputs=view_synthetic_forward, | |
) | |
with gr.Tab("Synthetic Forward (from backward)"): | |
slider_synthetic_forward_backward, view_synthetic_forward_backward = dataset_view_tab( | |
n_diffs_synthetic_forward_backward | |
) | |
slider_synthetic_forward_backward.change( | |
update_dataset_view_synthetic_forward_backward, | |
inputs=slider_synthetic_forward_backward, | |
outputs=view_synthetic_forward_backward, | |
) | |
with gr.Tab("Dataset Statistics"): | |
gr.Markdown("## Number of examples per split") | |
number_of_pairs_gr_plot = gr.Plot(number_of_pairs_plot, label=None) | |
gr.Markdown("## Edit Distance Distribution (w/o PyCharm Logs)") | |
edit_distance_gr_plot = gr.Plot(edit_distance_plot(), label=None) | |
with gr.Tab("Experimental Results"): | |
gr.Markdown( | |
"Here, we provide the additional experimental results with different text similarity metrics used as the target online metric, " | |
"in addition to edit distance between generated messages G and their edited counterparts E." | |
) | |
gr.Markdown( | |
"Please, select one of the available metrics **m*** below to see the correlations **Q(m, m\*)** of offline text similarity metrics with **m*** as an online metric." | |
) | |
for metric in METRICS: | |
with gr.Tab(metric): | |
gr.Markdown( | |
f"The table below presents the correlation coefficients **Q(m, m\*)** where {metric} is used as an online metric **m***." | |
) | |
result_df = get_correlations_table(METRICS[metric]) | |
gr.DataFrame(result_df) | |
application.load(update_dataset_view_manual, inputs=slider_manual, outputs=view_manual) | |
application.load( | |
update_dataset_view_synthetic_backward, inputs=slider_synthetic_backward, outputs=view_synthetic_backward | |
) | |
application.load( | |
update_dataset_view_synthetic_forward, inputs=slider_synthetic_forward, outputs=view_synthetic_forward | |
) | |
application.load( | |
update_dataset_view_synthetic_forward_backward, | |
inputs=slider_synthetic_forward_backward, | |
outputs=view_synthetic_forward_backward, | |
) | |
application.launch() | |