Spaces:
Sleeping
Sleeping
File size: 10,812 Bytes
692d068 d1c70f0 692d068 d1c70f0 692d068 d1c70f0 692d068 d1c70f0 692d068 d1c70f0 692d068 d1c70f0 692d068 d1c70f0 692d068 d1c70f0 692d068 d1c70f0 692d068 d1c70f0 692d068 d1c70f0 692d068 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 |
from __future__ import annotations
import base64
import gzip
import json
from dataclasses import dataclass, fields
from io import BytesIO
from pathlib import Path
from urllib.parse import parse_qsl
import altair as alt
import ipywidgets as widgets
import numpy as np
import polars as pl
import solara
import solara.lab
from cmap import Colormap
from ipymolstar.widget import PDBeMolstar
from pydantic import BaseModel
from make_link import decode_data
base_v = np.vectorize(np.base_repr)
PAD_SIZE = 0.05 # when not autoscale Y size of padding used
def norm(x, vmin, vmax):
return (x - vmin) / (vmax - vmin)
class ColorTransform(BaseModel):
name: str = "tol:rainbow_PuRd"
norm_type: str = "linear"
vmin: float = 0.0
vmax: float = 1.0
missing_data_color: str = "#8c8c8c"
highlight_color: str = "#e933f8"
def molstar_colors(self, data: pl.DataFrame) -> dict:
data = data.drop_nulls()
if self.norm_type == "categorical":
values = data["value"]
else:
values = norm(data["value"], vmin=self.vmin, vmax=self.vmax)
rgba_array = self.cmap(values, bytes=True)
ints = rgba_array.astype(np.uint8).view(dtype=np.uint32).byteswap()
padded = np.char.rjust(base_v(ints // 2**8, 16), 6, "0")
hex_colors = np.char.add("#", padded).squeeze()
color_data = {
"data": [
{"residue_number": resi, "color": hcolor.lower()}
for resi, hcolor in zip(data["residue_number"], hex_colors)
],
"nonSelectedColor": self.missing_data_color,
}
return color_data
@property
def cmap(self) -> Colormap:
return Colormap(self.name, bad=self.missing_data_color)
@property
def altair_scale(self) -> alt.Scale:
if self.norm_type == "categorical":
colors = self.cmap.to_altair(N=self.cmap.num_colors)
domain = range(self.cmap.num_colors)
else:
colors = self.cmap.to_altair()
domain = np.linspace(self.vmin, self.vmax, 256, endpoint=True)
scale = alt.Scale(domain=list(domain), range=colors, clamp=True)
return scale
class AxisProperties(BaseModel):
label: str = "x"
unit: str = "au"
autoscale_y: bool = True
@property
def title(self) -> str:
return f"{self.label} ({self.unit})"
def make_chart(
data: pl.DataFrame, colors: ColorTransform, axis_properties: AxisProperties
) -> alt.LayerChart:
xmin, xmax = data["residue_number"].min(), data["residue_number"].max()
xpad = (xmax - xmin) * 0.05
xscale = alt.Scale(domain=(xmin - xpad, xmax + xpad))
if axis_properties.autoscale_y:
y_scale = alt.Scale()
elif colors.norm_type == "categorical":
ypad = colors.cmap.num_colors * 0.05
y_scale = alt.Scale(domain=(0 - ypad, colors.cmap.num_colors - 1 + ypad))
else:
ypad = (colors.vmax - colors.vmin) * 0.05
y_scale = alt.Scale(domain=(colors.vmin - ypad, colors.vmax + ypad))
zoom_x = alt.selection_interval(
bind="scales",
encodings=["x"],
zoom="wheel![!event.shiftKey]",
)
scatter = (
alt.Chart(data)
.mark_circle(interpolate="basis", size=200)
.encode(
x=alt.X("residue_number:Q", title="Residue Number", scale=xscale),
y=alt.Y(
"value:Q",
title=axis_properties.title,
scale=y_scale,
),
color=alt.Color(
f"value:{'O' if colors.norm_type == 'categorical' else 'Q'}",
scale=colors.altair_scale,
title=axis_properties.title,
),
)
.add_params(zoom_x)
)
# Create a selection that chooses the nearest point & selects based on x-value
nearest = alt.selection_point(
name="point",
nearest=True,
on="pointerover",
fields=["residue_number"],
empty=False,
clear="mouseout",
)
select_residue = (
alt.Chart(data)
.mark_point()
.encode(
x="residue_number:Q",
opacity=alt.value(0),
)
.add_params(nearest)
)
# Draw a rule at the location of the selection
rule = (
alt.Chart(data)
.mark_rule(color=colors.highlight_color, size=2)
.encode(
x="residue_number:Q",
)
.transform_filter(nearest)
)
# vline = (
# alt.Chart(pd.DataFrame({"x": [0]}))
# .mark_rule(color=colors.highlight_color, size=2)
# .encode(x="x:Q")
# )
line_position = alt.param(name="line_position", value=0.0)
line_opacity = alt.param(name="line_opacity", value=1)
df_line = pl.DataFrame({"x": [1.0]})
# Create vertical rule with parameter
vline = (
alt.Chart(df_line)
.mark_rule(color=colors.highlight_color, opacity=line_opacity, size=2)
.encode(x=alt.X("p", type="quantitative"))
.transform_calculate(p=alt.datum.x * line_position)
.add_params(line_position, line_opacity)
)
# Put the five layers into a chart and bind the data
chart = (
alt.layer(scatter, vline, select_residue, rule).properties(
width="container",
height=480, # autosize height?
)
# .configure(autosize="fit")
)
return chart
@solara.component
def ScatterChart(
data: pl.DataFrame,
colors: ColorTransform,
axis_properties: AxisProperties,
on_selections,
line_value,
):
def mem_chart():
chart = make_chart(data, colors, axis_properties)
return chart
chart = solara.use_memo(mem_chart, dependencies=[data, colors, axis_properties])
if line_value is not None:
params = {"line_position": line_value, "line_opacity": 1}
else:
params = {"line_position": 0.0, "line_opacity": 0}
dark_effective = solara.lab.use_dark_effective()
if dark_effective:
options = {"actions": False, "theme": "dark"}
else:
options = {"actions": False}
view = alt.JupyterChart.element( # type: ignore
chart=chart,
embed_options=options,
_params=params,
)
def bind():
real = solara.get_widget(view)
real.selections.observe(on_selections, "point") # type: ignore
solara.use_effect(bind, [data, colors])
def is_numeric(val) -> bool:
if val is not None:
return not np.isnan(val)
return False
@solara.component
def ProteinView(
title: str,
molecule_id: str,
data: pl.DataFrame,
colors: ColorTransform,
axis_properties: AxisProperties,
dark_effective: bool,
description: str = "",
):
about_dialog = solara.use_reactive(False)
fullscreen = solara.use_reactive(False)
# residue number to highlight in altair chart
line_number = solara.use_reactive(None)
# residue number to highlight in protein view
highlight_number = solara.use_reactive(None)
if data.is_empty():
color_data = {}
else:
color_data = colors.molstar_colors(data)
tooltips = {
"data": [
{
"residue_number": resi,
"tooltip": f"{axis_properties.label}: {value:.2g} {axis_properties.unit}"
if is_numeric(value)
else "No data",
}
for resi, value in zip(data["residue_number"], data["value"])
]
}
def on_molstar_mouseover(value):
r = value.get("residueNumber", None)
line_number.set(r)
def on_molstar_mouseout(value):
on_molstar_mouseover({})
def on_chart_selection(event):
try:
r = event["new"].value[0]["residue_number"]
highlight_number.set(r)
except (IndexError, KeyError):
highlight_number.set(None)
with solara.AppBar():
solara.AppBarTitle(title)
with solara.Tooltip("Fullscreen"):
solara.Button(
icon_name="mdi-fullscreen",
icon=True,
on_click=lambda: fullscreen.set(not fullscreen.value),
)
if description:
with solara.Tooltip("About"):
solara.Button(
icon_name="mdi-information-outline",
icon=True,
on_click=lambda: about_dialog.set(True),
)
solara.lab.ThemeToggle()
with solara.v.Dialog(
v_model=about_dialog.value, on_v_model=lambda _ignore: about_dialog.set(False)
):
with solara.Card("About", margin=0):
solara.Markdown(description)
with solara.ColumnsResponsive([4, 8]):
with solara.Card(style={"height": "550px"}):
PDBeMolstar.element( # type: ignore
theme="dark" if dark_effective else "light",
molecule_id=molecule_id.lower(),
color_data=color_data,
hide_water=True,
tooltips=tooltips,
height="525px",
highlight={"data": [{"residue_number": int(highlight_number.value)}]}
if highlight_number.value
else None,
highlight_color=colors.highlight_color,
on_mouseover_event=on_molstar_mouseover,
on_mouseout_event=on_molstar_mouseout,
hide_controls_icon=True,
hide_expand_icon=True,
hide_settings_icon=True,
expanded=fullscreen.value,
).key(f"molstar-{dark_effective}")
if not fullscreen.value:
with solara.Card(style={"height": "550px"}):
if data.is_empty():
solara.Text("No data")
else:
ScatterChart(
data,
colors,
axis_properties,
on_chart_selection,
line_number.value,
)
@solara.component
def RoutedView():
route = solara.use_router()
dark_effective = solara.lab.use_dark_effective()
try:
query_dict = {k: v for k, v in parse_qsl(route.search)}
colors = ColorTransform(**query_dict) # type: ignore
axis_properties = AxisProperties(**query_dict) # type: ignore
data = decode_data(query_dict["data"])
ProteinView(
query_dict["title"],
molecule_id=query_dict["molecule_id"],
data=data,
colors=colors,
axis_properties=axis_properties,
dark_effective=dark_effective,
description=query_dict.get("description", ""),
)
except KeyError as err:
solara.Warning(f"Error: {err}")
|