Jinl commited on
Commit
d360398
·
1 Parent(s): ce39c0f

add NSFW checker and GPU mode

Browse files
Files changed (3) hide show
  1. app.py +44 -28
  2. data/nsfw.jpg +0 -0
  3. utils/pipeline.py +15 -1
app.py CHANGED
@@ -61,7 +61,13 @@ class GlobalText:
61
  self.pipeline = None
62
  self.torch_dtype = torch.float16 if torch.cuda.is_available() else torch.float32
63
  self.lora_model_state_dict = {}
64
- self.device = torch.device("cpu")
 
 
 
 
 
 
65
 
66
  def init_source_image_path(self, source_path):
67
  self.source_paths = sorted(glob(os.path.join(source_path, '*')))
@@ -83,9 +89,9 @@ class GlobalText:
83
 
84
  self.scheduler = 'LCM'
85
  scheduler = LCMScheduler.from_pretrained(model_path, subfolder="scheduler")
86
- self.pipeline = ZePoPipeline.from_pretrained(model_path,scheduler=scheduler,torch_dtype=torch.float16,)
87
- # if is_xformers:
88
- # self.pipeline.enable_xformers_memory_efficient_attention()
89
  time_end = datetime.now()
90
  print(f'Load {model_path} successful in {time_end-time_start}')
91
  return gr.Dropdown()
@@ -171,7 +177,7 @@ class GlobalText:
171
  de_bug=de_bug,)
172
 
173
  time_begin = datetime.now()
174
- generate_image = model(prompt=prompts,
175
  negative_prompt=negative_prompt_textbox,
176
  image=source,
177
  style=style,
@@ -183,7 +189,16 @@ class GlobalText:
183
  fix_step_index=co_feat_step,
184
  de_bug = de_bug,
185
  callback = None
186
- ).images
 
 
 
 
 
 
 
 
 
187
  time_end = datetime.now()
188
  print('generate one image with time {}'.format(time_end-time_begin))
189
 
@@ -191,18 +206,19 @@ class GlobalText:
191
 
192
 
193
  save_file_path = os.path.join(self.savedir, save_file_name)
194
-
195
  save_image(torch.tensor(generate_image).permute(0, 3, 1, 2), save_file_path, nrow=3, padding=0)
196
  save_image(torch.tensor(generate_image[2:]).permute(0, 3, 1, 2), os.path.join(self.savedir_sample, save_file_name), nrow=3, padding=0)
197
  self.init_results_image_path()
198
- return [
199
- generate_image[0],
200
- generate_image[1],
201
- generate_image[2],
202
- self.init_results_image_path()
203
- ]
204
-
205
 
 
 
 
 
 
 
 
 
206
  global_text = GlobalText()
207
 
208
 
@@ -309,23 +325,23 @@ def ui():
309
 
310
  style_gallery_index.change(fn=update_style_list, inputs=[style_gallery_index], outputs=[style_image_gallery])
311
 
312
- with gr.Tab("Results Gallery"):
313
- with gr.Row():
314
- refresh_results_list_button = gr.Button(value="\U0001F503", elem_classes="toolbutton")
315
- results_gallery_index = gr.Slider(label="Index", value=0, minimum=0, maximum=50, step=1)
316
- num_gallery_images = 12
317
- results_image_gallery = gr.Gallery(value=[], columns=4, label="style Image List")
318
- refresh_results_list_button.click(fn=global_text.init_results_image_path, inputs=[], outputs=[results_image_gallery])
319
 
320
 
321
- def update_results_list(index):
322
- if int(index) < 0:
323
- index = 0
324
- if int(index) > global_text.max_results_index:
325
- index = global_text.max_results_index
326
- return global_text.results_paths[int(index)*num_gallery_images:(int(index)+1)*num_gallery_images]
327
 
328
- results_gallery_index.change(fn=update_results_list, inputs=[results_gallery_index], outputs=[style_image_gallery])
329
 
330
 
331
 
 
61
  self.pipeline = None
62
  self.torch_dtype = torch.float16 if torch.cuda.is_available() else torch.float32
63
  self.lora_model_state_dict = {}
64
+ self.device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")
65
+
66
+ self.nsfw_image = Image.open('./data/nsfw.jpg') # to float in [0,1]
67
+
68
+
69
+
70
+
71
 
72
  def init_source_image_path(self, source_path):
73
  self.source_paths = sorted(glob(os.path.join(source_path, '*')))
 
89
 
90
  self.scheduler = 'LCM'
91
  scheduler = LCMScheduler.from_pretrained(model_path, subfolder="scheduler")
92
+ self.pipeline = ZePoPipeline.from_pretrained(model_path,scheduler=scheduler,torch_dtype=torch.float16,).to('cuda')
93
+ if is_xformers:
94
+ self.pipeline.enable_xformers_memory_efficient_attention()
95
  time_end = datetime.now()
96
  print(f'Load {model_path} successful in {time_end-time_start}')
97
  return gr.Dropdown()
 
177
  de_bug=de_bug,)
178
 
179
  time_begin = datetime.now()
180
+ results = model(prompt=prompts,
181
  negative_prompt=negative_prompt_textbox,
182
  image=source,
183
  style=style,
 
189
  fix_step_index=co_feat_step,
190
  de_bug = de_bug,
191
  callback = None
192
+ )
193
+ generate_image = results.images
194
+
195
+
196
+ for idx, has_nsfw_concept in enumerate(results.nsfw_content_detected):
197
+ if has_nsfw_concept:
198
+ generate_image[idx] = np.array(self.nsfw_image.resize((height_slider,width_slider))).astype(np.float32) / 255.0
199
+
200
+
201
+
202
  time_end = datetime.now()
203
  print('generate one image with time {}'.format(time_end-time_begin))
204
 
 
206
 
207
 
208
  save_file_path = os.path.join(self.savedir, save_file_name)
209
+
210
  save_image(torch.tensor(generate_image).permute(0, 3, 1, 2), save_file_path, nrow=3, padding=0)
211
  save_image(torch.tensor(generate_image[2:]).permute(0, 3, 1, 2), os.path.join(self.savedir_sample, save_file_name), nrow=3, padding=0)
212
  self.init_results_image_path()
 
 
 
 
 
 
 
213
 
214
+ return [
215
+ generate_image[0],
216
+ generate_image[1],
217
+ generate_image[2],
218
+ self.init_results_image_path()
219
+ ]
220
+
221
+
222
  global_text = GlobalText()
223
 
224
 
 
325
 
326
  style_gallery_index.change(fn=update_style_list, inputs=[style_gallery_index], outputs=[style_image_gallery])
327
 
328
+ # with gr.Tab("Results Gallery"):
329
+ # with gr.Row():
330
+ # refresh_results_list_button = gr.Button(value="\U0001F503", elem_classes="toolbutton")
331
+ # results_gallery_index = gr.Slider(label="Index", value=0, minimum=0, maximum=50, step=1)
332
+ # num_gallery_images = 12
333
+ # results_image_gallery = gr.Gallery(value=[], columns=4, label="style Image List")
334
+ # refresh_results_list_button.click(fn=global_text.init_results_image_path, inputs=[], outputs=[results_image_gallery])
335
 
336
 
337
+ # def update_results_list(index):
338
+ # if int(index) < 0:
339
+ # index = 0
340
+ # if int(index) > global_text.max_results_index:
341
+ # index = global_text.max_results_index
342
+ # return global_text.results_paths[int(index)*num_gallery_images:(int(index)+1)*num_gallery_images]
343
 
344
+ # results_gallery_index.change(fn=update_results_list, inputs=[results_gallery_index], outputs=[style_image_gallery])
345
 
346
 
347
 
data/nsfw.jpg ADDED
utils/pipeline.py CHANGED
@@ -157,6 +157,20 @@ class ZePoPipeline(DiffusionPipeline, TextualInversionLoaderMixin, LoraLoaderMix
157
  extra_step_kwargs["generator"] = generator
158
  return extra_step_kwargs
159
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
160
 
161
  # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.decode_latents
162
  def decode_latents(self, latents):
@@ -416,7 +430,7 @@ class ZePoPipeline(DiffusionPipeline, TextualInversionLoaderMixin, LoraLoaderMix
416
  # 9. Post-processing
417
  if not output_type == "latent":
418
  image = self.vae.decode(pred_x0 / self.vae.config.scaling_factor, return_dict=False)[0]
419
- has_nsfw_concept = None
420
  else:
421
  image = pred_x0
422
  has_nsfw_concept = None
 
157
  extra_step_kwargs["generator"] = generator
158
  return extra_step_kwargs
159
 
160
+ # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.run_safety_checker
161
+ def run_safety_checker(self, image, device, dtype):
162
+ if self.safety_checker is None:
163
+ has_nsfw_concept = None
164
+ else:
165
+ if torch.is_tensor(image):
166
+ feature_extractor_input = self.image_processor.postprocess(image, output_type="pil")
167
+ else:
168
+ feature_extractor_input = self.image_processor.numpy_to_pil(image)
169
+ safety_checker_input = self.feature_extractor(feature_extractor_input, return_tensors="pt").to(device)
170
+ image, has_nsfw_concept = self.safety_checker(
171
+ images=image, clip_input=safety_checker_input.pixel_values.to(dtype)
172
+ )
173
+ return image, has_nsfw_concept
174
 
175
  # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.decode_latents
176
  def decode_latents(self, latents):
 
430
  # 9. Post-processing
431
  if not output_type == "latent":
432
  image = self.vae.decode(pred_x0 / self.vae.config.scaling_factor, return_dict=False)[0]
433
+ image, has_nsfw_concept = self.run_safety_checker(image, device, prompt_embeds.dtype)
434
  else:
435
  image = pred_x0
436
  has_nsfw_concept = None