JoBeer commited on
Commit
745b80e
·
1 Parent(s): 02644cf

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +18 -5
app.py CHANGED
@@ -1,6 +1,7 @@
1
  import gradio as gr
2
  import sentence_transformers
3
  from sentence_transformers import SentenceTransformer
 
4
 
5
  import pandas as pd
6
 
@@ -8,12 +9,24 @@ model = SentenceTransformer('JoBeer/all-mpnet-base-v2-eclass')
8
 
9
  corpus = pd.read_excel('corpus.xlsx')
10
 
11
- def predict(i):
12
- name = corpus[i][5]
13
- return name
 
 
 
 
 
 
 
 
 
 
 
 
14
 
15
- interface = gr.Interface(fn = predict, inputs = gr.Textbox(label="did:", placeholder="z.B. query", lines=1),
16
- outputs = 'text',
17
  title = 'ECLASS-Property-Search')
18
 
19
  interface.launch()
 
1
  import gradio as gr
2
  import sentence_transformers
3
  from sentence_transformers import SentenceTransformer
4
+ from sentence_transformers.util import semantic_search
5
 
6
  import pandas as pd
7
 
 
9
 
10
  corpus = pd.read_excel('corpus.xlsx')
11
 
12
+ def predict(name, description):
13
+ text = 'Description: '+ description + '; Name: ' + name
14
+ query_embedding = model.encode(text, convert_to_tensor=True)
15
+
16
+ corpus_embeddings = torch.FloatTensor(corpus["embeddings"])
17
+
18
+ output = sentence_transformers.util.semantic_search(query_embedding, corpus_embeddings, top_k = 5)
19
+
20
+ preferedName1 = corpus.iloc[output[0][0].get('corpus_id'),2]
21
+ definition1 = corpus.iloc[output[0][0].get('corpus_id'),1]
22
+ IRDI1 = corpus.iloc[output[0][0].get('corpus_id'),4]
23
+ score1 = output[0][0].get('score')
24
+
25
+
26
+ return preferedName1, definition1, IRDI1, score1
27
 
28
+ interface = gr.Interface(fn = predict, inputs = [gr.Textbox(label="Description:", placeholder="z.B. Globel Trade Item Number", lines=1), gr.Textbox(label="Name:", placeholder="z.B. GTIN", lines=1)],
29
+ outputs = [gr.Textbox(label = 'preferedName'),gr.Textbox(label = 'definition'), gr.Textbox(label = 'IDRI'),gr.Textbox(label = 'score')]
30
  title = 'ECLASS-Property-Search')
31
 
32
  interface.launch()