|
import numpy as np |
|
from typing import Dict |
|
|
|
|
|
def softmax(x: np.ndarray, axis: int): |
|
x -= x.max(axis=axis, keepdims=True) |
|
e: np.ndarray = np.exp(x) |
|
return e / e.sum(axis=axis, keepdims=True) |
|
|
|
def sample_logits(out, temperature: float = 1.0, top_p: float = 0.8, logit_bias: Dict[int, float] = None) -> int: |
|
if hasattr(out, '__module__') and out.__module__ == 'torch': |
|
out = out.cpu().numpy() |
|
|
|
probs: np.ndarray = softmax(out, axis=-1) |
|
|
|
return sample_probs(probs, temperature, top_p, logit_bias) |
|
|
|
def sample_probs(probs: np.ndarray, temperature: float = 1.0, top_p: float = 0.8, logit_bias: Dict[int, float] = None) -> int: |
|
if not (0.0 <= temperature): |
|
raise ValueError('temperature') |
|
if not (0.0 <= top_p <= 1.0): |
|
raise ValueError('top_p') |
|
|
|
if top_p == 0.0: |
|
top_p = 1.0 |
|
|
|
if logit_bias is not None and len(logit_bias) > 0: |
|
logits: np.ndarray = np.log(probs) |
|
|
|
ids, values = zip(*logit_bias.items()) |
|
logits[list(ids)] += values |
|
|
|
|
|
logits -= logits.max(axis=-1, keepdims=True) |
|
|
|
probs = np.exp(logits) / np.sum(np.exp(logits)) |
|
|
|
if temperature == 0.0: |
|
return np.argmax(probs).item() |
|
|
|
if top_p < 1.0: |
|
sorted_probs = np.sort(probs)[::-1] |
|
cumulative_probs = np.cumsum(sorted_probs) |
|
cutoff = float(sorted_probs[np.argmax(cumulative_probs > top_p)]) |
|
probs[probs < cutoff] = 0 |
|
|
|
if temperature != 1.0: |
|
probs = np.power(probs, 1.0 / temperature) |
|
|
|
probs = probs / np.sum(probs) |
|
|
|
return np.random.choice(a=len(probs), p=probs) |
|
|