from PIL import Image import base64 from io import BytesIO import json import os import requests from typing import Optional from huggingface_hub import InferenceClient from transformers import AutoProcessor, Tool import uuid import mimetypes ##from dotenv import load_dotenv ##load_dotenv(override=True) idefics_processor = AutoProcessor.from_pretrained("HuggingFaceM4/idefics2-8b") def process_images_and_text(image_path, query, client): messages = [ { "role": "user", "content": [ {"type": "image"}, {"type": "text", "text": query}, ] }, ] prompt_with_template = idefics_processor.apply_chat_template(messages, add_generation_prompt=True) # load images from local directory # encode images to strings which can be sent to the endpoint def encode_local_image(image_path): # load image image = Image.open(image_path).convert('RGB') # Convert the image to a base64 string buffer = BytesIO() image.save(buffer, format="JPEG") # Use the appropriate format (e.g., JPEG, PNG) base64_image = base64.b64encode(buffer.getvalue()).decode('utf-8') # add string formatting required by the endpoint image_string = f"data:image/jpeg;base64,{base64_image}" return image_string image_string = encode_local_image(image_path) prompt_with_images = prompt_with_template.replace("", "![]({}) ").format(image_string) payload = { "inputs": prompt_with_images, "parameters": { "return_full_text": False, "max_new_tokens": 200, } } return json.loads(client.post(json=payload).decode())[0] # Function to encode the image def encode_image(image_path): if image_path.startswith("http"): user_agent = "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/119.0.0.0 Safari/537.36 Edg/119.0.0.0" request_kwargs = { "headers": {"User-Agent": user_agent}, "stream": True, } # Send a HTTP request to the URL response = requests.get(image_path, **request_kwargs) response.raise_for_status() content_type = response.headers.get("content-type", "") extension = mimetypes.guess_extension(content_type) if extension is None: extension = ".download" fname = str(uuid.uuid4()) + extension download_path = os.path.abspath(os.path.join("downloads", fname)) with open(download_path, "wb") as fh: for chunk in response.iter_content(chunk_size=512): fh.write(chunk) image_path = download_path with open(image_path, "rb") as image_file: return base64.b64encode(image_file.read()).decode('utf-8') headers = { "Content-Type": "application/json", "Authorization": f"Bearer {os.getenv('OPENAI_API_KEY')}" } def resize_image(image_path): img = Image.open(image_path) width, height = img.size img = img.resize((int(width / 2), int(height / 2))) new_image_path = f"resized_{image_path}" img.save(new_image_path) return new_image_path class VisualQATool(Tool): name = "visualizer" description = "A tool that can answer questions about attached images." inputs = { "question": {"description": "the question to answer", "type": "text"}, "image_path": { "description": "The path to the image on which to answer the question", "type": "text", }, } output_type = "text" client = InferenceClient("HuggingFaceM4/idefics2-8b-chatty") def forward(self, image_path: str, question: Optional[str] = None) -> str: add_note = False if not question: add_note = True question = "Please write a detailed caption for this image." try: output = process_images_and_text(image_path, question, self.client) except Exception as e: print(e) if "Payload Too Large" in str(e): new_image_path = resize_image(image_path) output = process_images_and_text(new_image_path, question, self.client) if add_note: output = f"You did not provide a particular question, so here is a detailed caption for the image: {output}" return output class VisualQAGPT4Tool(Tool): name = "visualizer" description = "A tool that can answer questions about attached images." inputs = { "question": {"description": "the question to answer", "type": "text"}, "image_path": { "description": "The path to the image on which to answer the question. This should be a local path to downloaded image.", "type": "text", }, } output_type = "text" def forward(self, image_path: str, question: Optional[str] = None) -> str: add_note = False if not question: add_note = True question = "Please write a detailed caption for this image." if not isinstance(image_path, str): raise Exception("You should provide only one string as argument to this tool!") base64_image = encode_image(image_path) payload = { "model": "gpt-4o", "messages": [ { "role": "user", "content": [ { "type": "text", "text": question }, { "type": "image_url", "image_url": { "url": f"data:image/jpeg;base64,{base64_image}" } } ] } ], "max_tokens": 500 } response = requests.post("https://api.openai.com/v1/chat/completions", headers=headers, json=payload) try: output = response.json()['choices'][0]['message']['content'] except Exception: raise Exception(f"Response format unexpected: {response.json()}") if add_note: output = f"You did not provide a particular question, so here is a detailed caption for the image: {output}" return output