Spaces:
Runtime error
Runtime error
Commit
·
f05bb07
0
Parent(s):
Duplicate from weizmannscience/tokenflow
Browse filesCo-authored-by: Linoy Tsaban <[email protected]>
- .gitattributes +37 -0
- README.md +13 -0
- app.py +374 -0
- examples/cutting_bread.mp4 +0 -0
- examples/rocket_kittens.mp4 +0 -0
- examples/running_dog.mp4 +3 -0
- examples/wolf.mp4 +0 -0
- examples/woman-running.mp4 +3 -0
- preprocess_utils.py +375 -0
- requirements.txt +14 -0
- style.css +91 -0
- tokenflow_pnp.py +364 -0
- tokenflow_utils.py +448 -0
- utils.py +121 -0
.gitattributes
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
*.7z filter=lfs diff=lfs merge=lfs -text
|
2 |
+
*.arrow filter=lfs diff=lfs merge=lfs -text
|
3 |
+
*.bin filter=lfs diff=lfs merge=lfs -text
|
4 |
+
*.bz2 filter=lfs diff=lfs merge=lfs -text
|
5 |
+
*.ckpt filter=lfs diff=lfs merge=lfs -text
|
6 |
+
*.ftz filter=lfs diff=lfs merge=lfs -text
|
7 |
+
*.gz filter=lfs diff=lfs merge=lfs -text
|
8 |
+
*.h5 filter=lfs diff=lfs merge=lfs -text
|
9 |
+
*.joblib filter=lfs diff=lfs merge=lfs -text
|
10 |
+
*.lfs.* filter=lfs diff=lfs merge=lfs -text
|
11 |
+
*.mlmodel filter=lfs diff=lfs merge=lfs -text
|
12 |
+
*.model filter=lfs diff=lfs merge=lfs -text
|
13 |
+
*.msgpack filter=lfs diff=lfs merge=lfs -text
|
14 |
+
*.npy filter=lfs diff=lfs merge=lfs -text
|
15 |
+
*.npz filter=lfs diff=lfs merge=lfs -text
|
16 |
+
*.onnx filter=lfs diff=lfs merge=lfs -text
|
17 |
+
*.ot filter=lfs diff=lfs merge=lfs -text
|
18 |
+
*.parquet filter=lfs diff=lfs merge=lfs -text
|
19 |
+
*.pb filter=lfs diff=lfs merge=lfs -text
|
20 |
+
*.pickle filter=lfs diff=lfs merge=lfs -text
|
21 |
+
*.pkl filter=lfs diff=lfs merge=lfs -text
|
22 |
+
*.pt filter=lfs diff=lfs merge=lfs -text
|
23 |
+
*.pth filter=lfs diff=lfs merge=lfs -text
|
24 |
+
*.rar filter=lfs diff=lfs merge=lfs -text
|
25 |
+
*.safetensors filter=lfs diff=lfs merge=lfs -text
|
26 |
+
saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
27 |
+
*.tar.* filter=lfs diff=lfs merge=lfs -text
|
28 |
+
*.tar filter=lfs diff=lfs merge=lfs -text
|
29 |
+
*.tflite filter=lfs diff=lfs merge=lfs -text
|
30 |
+
*.tgz filter=lfs diff=lfs merge=lfs -text
|
31 |
+
*.wasm filter=lfs diff=lfs merge=lfs -text
|
32 |
+
*.xz filter=lfs diff=lfs merge=lfs -text
|
33 |
+
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
+
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
+
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
+
examples/woman-running.mp4 filter=lfs diff=lfs merge=lfs -text
|
37 |
+
examples/running_dog.mp4 filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
@@ -0,0 +1,13 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
title: Tokenflow
|
3 |
+
emoji: 🐠
|
4 |
+
colorFrom: purple
|
5 |
+
colorTo: blue
|
6 |
+
sdk: gradio
|
7 |
+
sdk_version: 3.41.2
|
8 |
+
app_file: app.py
|
9 |
+
pinned: false
|
10 |
+
duplicated_from: weizmannscience/tokenflow
|
11 |
+
---
|
12 |
+
|
13 |
+
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
app.py
ADDED
@@ -0,0 +1,374 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import torch
|
3 |
+
from diffusers import StableDiffusionPipeline, DDIMScheduler
|
4 |
+
from utils import video_to_frames, add_dict_to_yaml_file, save_video, seed_everything
|
5 |
+
# from diffusers.utils import export_to_video
|
6 |
+
from tokenflow_pnp import TokenFlow
|
7 |
+
from preprocess_utils import *
|
8 |
+
from tokenflow_utils import *
|
9 |
+
# load sd model
|
10 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
11 |
+
model_id = "stabilityai/stable-diffusion-2-1-base"
|
12 |
+
|
13 |
+
# components for the Preprocessor
|
14 |
+
scheduler = DDIMScheduler.from_pretrained(model_id, subfolder="scheduler")
|
15 |
+
vae = AutoencoderKL.from_pretrained(model_id, subfolder="vae", revision="fp16",
|
16 |
+
torch_dtype=torch.float16).to(device)
|
17 |
+
tokenizer = CLIPTokenizer.from_pretrained(model_id, subfolder="tokenizer")
|
18 |
+
text_encoder = CLIPTextModel.from_pretrained(model_id, subfolder="text_encoder", revision="fp16",
|
19 |
+
torch_dtype=torch.float16).to(device)
|
20 |
+
unet = UNet2DConditionModel.from_pretrained(model_id, subfolder="unet", revision="fp16",
|
21 |
+
torch_dtype=torch.float16).to(device)
|
22 |
+
|
23 |
+
# pipe for TokenFlow
|
24 |
+
tokenflow_pipe = StableDiffusionPipeline.from_pretrained(model_id, torch_dtype=torch.float16).to("cuda")
|
25 |
+
tokenflow_pipe.enable_xformers_memory_efficient_attention()
|
26 |
+
|
27 |
+
def randomize_seed_fn():
|
28 |
+
seed = random.randint(0, np.iinfo(np.int32).max)
|
29 |
+
return seed
|
30 |
+
|
31 |
+
def reset_do_inversion():
|
32 |
+
return True
|
33 |
+
|
34 |
+
def get_example():
|
35 |
+
case = [
|
36 |
+
[
|
37 |
+
'examples/wolf.mp4',
|
38 |
+
],
|
39 |
+
[
|
40 |
+
'examples/woman-running.mp4',
|
41 |
+
],
|
42 |
+
[
|
43 |
+
'examples/cutting_bread.mp4',
|
44 |
+
],
|
45 |
+
[
|
46 |
+
'examples/running_dog.mp4',
|
47 |
+
]
|
48 |
+
]
|
49 |
+
return case
|
50 |
+
|
51 |
+
|
52 |
+
def prep(config):
|
53 |
+
# timesteps to save
|
54 |
+
if config["sd_version"] == '2.1':
|
55 |
+
model_key = "stabilityai/stable-diffusion-2-1-base"
|
56 |
+
elif config["sd_version"] == '2.0':
|
57 |
+
model_key = "stabilityai/stable-diffusion-2-base"
|
58 |
+
elif config["sd_version"] == '1.5' or config["sd_version"] == 'ControlNet':
|
59 |
+
model_key = "runwayml/stable-diffusion-v1-5"
|
60 |
+
elif config["sd_version"] == 'depth':
|
61 |
+
model_key = "stabilityai/stable-diffusion-2-depth"
|
62 |
+
toy_scheduler = DDIMScheduler.from_pretrained(model_key, subfolder="scheduler")
|
63 |
+
toy_scheduler.set_timesteps(config["save_steps"])
|
64 |
+
print("config[save_steps]", config["save_steps"])
|
65 |
+
timesteps_to_save, num_inference_steps = get_timesteps(toy_scheduler, num_inference_steps=config["save_steps"],
|
66 |
+
strength=1.0,
|
67 |
+
device=device)
|
68 |
+
print("YOOOO timesteps to save", timesteps_to_save)
|
69 |
+
|
70 |
+
# seed_everything(config["seed"])
|
71 |
+
if not config["frames"]: # original non demo setting
|
72 |
+
save_path = os.path.join(config["save_dir"],
|
73 |
+
f'sd_{config["sd_version"]}',
|
74 |
+
Path(config["data_path"]).stem,
|
75 |
+
f'steps_{config["steps"]}',
|
76 |
+
f'nframes_{config["n_frames"]}')
|
77 |
+
os.makedirs(os.path.join(save_path, f'latents'), exist_ok=True)
|
78 |
+
add_dict_to_yaml_file(os.path.join(config["save_dir"], 'inversion_prompts.yaml'), Path(config["data_path"]).stem, config["inversion_prompt"])
|
79 |
+
# save inversion prompt in a txt file
|
80 |
+
with open(os.path.join(save_path, 'inversion_prompt.txt'), 'w') as f:
|
81 |
+
f.write(config["inversion_prompt"])
|
82 |
+
else:
|
83 |
+
save_path = None
|
84 |
+
|
85 |
+
model = Preprocess(device, config,
|
86 |
+
vae=vae,
|
87 |
+
text_encoder=text_encoder,
|
88 |
+
scheduler=scheduler,
|
89 |
+
tokenizer=tokenizer,
|
90 |
+
unet=unet)
|
91 |
+
print(type(model.config["batch_size"]))
|
92 |
+
frames, latents, total_inverted_latents, rgb_reconstruction = model.extract_latents(
|
93 |
+
num_steps=model.config["steps"],
|
94 |
+
save_path=save_path,
|
95 |
+
batch_size=model.config["batch_size"],
|
96 |
+
timesteps_to_save=timesteps_to_save,
|
97 |
+
inversion_prompt=model.config["inversion_prompt"],
|
98 |
+
)
|
99 |
+
|
100 |
+
|
101 |
+
return frames, latents, total_inverted_latents, rgb_reconstruction
|
102 |
+
|
103 |
+
def preprocess_and_invert(input_video,
|
104 |
+
frames,
|
105 |
+
latents,
|
106 |
+
inverted_latents,
|
107 |
+
seed,
|
108 |
+
randomize_seed,
|
109 |
+
do_inversion,
|
110 |
+
# save_dir: str = "latents",
|
111 |
+
steps,
|
112 |
+
n_timesteps = 50,
|
113 |
+
batch_size: int = 8,
|
114 |
+
n_frames: int = 40,
|
115 |
+
inversion_prompt:str = '',
|
116 |
+
|
117 |
+
):
|
118 |
+
sd_version = "2.1"
|
119 |
+
height = 512
|
120 |
+
weidth: int = 512
|
121 |
+
print("n timesteps", n_timesteps)
|
122 |
+
if do_inversion or randomize_seed:
|
123 |
+
preprocess_config = {}
|
124 |
+
preprocess_config['H'] = height
|
125 |
+
preprocess_config['W'] = weidth
|
126 |
+
preprocess_config['save_dir'] = 'latents'
|
127 |
+
preprocess_config['sd_version'] = sd_version
|
128 |
+
preprocess_config['steps'] = steps
|
129 |
+
preprocess_config['batch_size'] = batch_size
|
130 |
+
preprocess_config['save_steps'] = int(n_timesteps)
|
131 |
+
preprocess_config['n_frames'] = n_frames
|
132 |
+
preprocess_config['seed'] = seed
|
133 |
+
preprocess_config['inversion_prompt'] = inversion_prompt
|
134 |
+
preprocess_config['frames'] = video_to_frames(input_video)
|
135 |
+
preprocess_config['data_path'] = input_video.split(".")[0]
|
136 |
+
|
137 |
+
|
138 |
+
if randomize_seed:
|
139 |
+
seed = randomize_seed_fn()
|
140 |
+
seed_everything(seed)
|
141 |
+
|
142 |
+
frames, latents, total_inverted_latents, rgb_reconstruction = prep(preprocess_config)
|
143 |
+
print(total_inverted_latents.keys())
|
144 |
+
print(len(total_inverted_latents.keys()))
|
145 |
+
frames = gr.State(value=frames)
|
146 |
+
latents = gr.State(value=latents)
|
147 |
+
inverted_latents = gr.State(value=total_inverted_latents)
|
148 |
+
do_inversion = False
|
149 |
+
|
150 |
+
return frames, latents, inverted_latents, do_inversion
|
151 |
+
|
152 |
+
|
153 |
+
def edit_with_pnp(input_video,
|
154 |
+
frames,
|
155 |
+
latents,
|
156 |
+
inverted_latents,
|
157 |
+
seed,
|
158 |
+
randomize_seed,
|
159 |
+
do_inversion,
|
160 |
+
steps,
|
161 |
+
prompt: str = "a marble sculpture of a woman running, Venus de Milo",
|
162 |
+
# negative_prompt: str = "ugly, blurry, low res, unrealistic, unaesthetic",
|
163 |
+
pnp_attn_t: float = 0.5,
|
164 |
+
pnp_f_t: float = 0.8,
|
165 |
+
batch_size: int = 8, #needs to be the same as for preprocess
|
166 |
+
n_frames: int = 40,#needs to be the same as for preprocess
|
167 |
+
n_timesteps: int = 50,
|
168 |
+
gudiance_scale: float = 7.5,
|
169 |
+
inversion_prompt: str = "", #needs to be the same as for preprocess
|
170 |
+
n_fps: int = 10,
|
171 |
+
progress=gr.Progress(track_tqdm=True)
|
172 |
+
):
|
173 |
+
config = {}
|
174 |
+
|
175 |
+
config["sd_version"] = "2.1"
|
176 |
+
config["device"] = device
|
177 |
+
config["n_timesteps"] = int(n_timesteps)
|
178 |
+
config["n_frames"] = n_frames
|
179 |
+
config["batch_size"] = batch_size
|
180 |
+
config["guidance_scale"] = gudiance_scale
|
181 |
+
config["prompt"] = prompt
|
182 |
+
config["negative_prompt"] = "ugly, blurry, low res, unrealistic, unaesthetic",
|
183 |
+
config["pnp_attn_t"] = pnp_attn_t
|
184 |
+
config["pnp_f_t"] = pnp_f_t
|
185 |
+
config["pnp_inversion_prompt"] = inversion_prompt
|
186 |
+
|
187 |
+
|
188 |
+
if do_inversion:
|
189 |
+
frames, latents, inverted_latents, do_inversion = preprocess_and_invert(
|
190 |
+
input_video,
|
191 |
+
frames,
|
192 |
+
latents,
|
193 |
+
inverted_latents,
|
194 |
+
seed,
|
195 |
+
randomize_seed,
|
196 |
+
do_inversion,
|
197 |
+
steps,
|
198 |
+
n_timesteps,
|
199 |
+
batch_size,
|
200 |
+
n_frames,
|
201 |
+
inversion_prompt)
|
202 |
+
do_inversion = False
|
203 |
+
|
204 |
+
|
205 |
+
if randomize_seed:
|
206 |
+
seed = randomize_seed_fn()
|
207 |
+
seed_everything(seed)
|
208 |
+
|
209 |
+
|
210 |
+
editor = TokenFlow(config=config,pipe=tokenflow_pipe, frames=frames.value, inverted_latents=inverted_latents.value)
|
211 |
+
edited_frames = editor.edit_video()
|
212 |
+
|
213 |
+
save_video(edited_frames, 'tokenflow_PnP_fps_30.mp4', fps=n_fps)
|
214 |
+
# path = export_to_video(edited_frames)
|
215 |
+
return 'tokenflow_PnP_fps_30.mp4', frames, latents, inverted_latents, do_inversion
|
216 |
+
|
217 |
+
########
|
218 |
+
# demo #
|
219 |
+
########
|
220 |
+
|
221 |
+
|
222 |
+
intro = """
|
223 |
+
<div style="text-align:center">
|
224 |
+
<h1 style="font-weight: 1400; text-align: center; margin-bottom: 7px;">
|
225 |
+
TokenFlow - <small>Temporally consistent video editing</small>
|
226 |
+
</h1>
|
227 |
+
<span>[<a target="_blank" href="https://diffusion-tokenflow.github.io">Project page</a>], [<a target="_blank" href="https://github.com/omerbt/TokenFlow">GitHub</a>], [<a target="_blank" href="https://huggingface.co/papers/2307.10373">Paper</a>]</span>
|
228 |
+
<div style="display:flex; justify-content: center;margin-top: 0.5em">Each edit takes ~5 min <a href="https://huggingface.co/weizmannscience/tokenflow?duplicate=true" target="_blank">
|
229 |
+
<img style="margin-top: 0em; margin-bottom: 0em; margin-left: 0.5em" src="https://bit.ly/3CWLGkA" alt="Duplicate Space"></a></div>
|
230 |
+
</div>
|
231 |
+
"""
|
232 |
+
|
233 |
+
|
234 |
+
|
235 |
+
with gr.Blocks(css="style.css") as demo:
|
236 |
+
|
237 |
+
gr.HTML(intro)
|
238 |
+
frames = gr.State()
|
239 |
+
inverted_latents = gr.State()
|
240 |
+
latents = gr.State()
|
241 |
+
do_inversion = gr.State(value=True)
|
242 |
+
|
243 |
+
with gr.Row():
|
244 |
+
input_video = gr.Video(label="Input Video", interactive=True, elem_id="input_video")
|
245 |
+
output_video = gr.Video(label="Edited Video", interactive=False, elem_id="output_video")
|
246 |
+
input_video.style(height=365, width=365)
|
247 |
+
output_video.style(height=365, width=365)
|
248 |
+
|
249 |
+
|
250 |
+
with gr.Row():
|
251 |
+
prompt = gr.Textbox(
|
252 |
+
label="Describe your edited video",
|
253 |
+
max_lines=1, value=""
|
254 |
+
)
|
255 |
+
# with gr.Group(visible=False) as share_btn_container:
|
256 |
+
# with gr.Group(elem_id="share-btn-container"):
|
257 |
+
# community_icon = gr.HTML(community_icon_html, visible=True)
|
258 |
+
# loading_icon = gr.HTML(loading_icon_html, visible=False)
|
259 |
+
# share_button = gr.Button("Share to community", elem_id="share-btn", visible=True)
|
260 |
+
|
261 |
+
|
262 |
+
# with gr.Row():
|
263 |
+
# inversion_progress = gr.Textbox(visible=False, label="Inversion progress")
|
264 |
+
|
265 |
+
with gr.Row():
|
266 |
+
run_button = gr.Button("Edit your video!", visible=True)
|
267 |
+
|
268 |
+
with gr.Accordion("Advanced Options", open=False):
|
269 |
+
with gr.Tabs() as tabs:
|
270 |
+
with gr.TabItem('General options'):
|
271 |
+
with gr.Row():
|
272 |
+
with gr.Column(min_width=100):
|
273 |
+
seed = gr.Number(value=0, precision=0, label="Seed", interactive=True)
|
274 |
+
randomize_seed = gr.Checkbox(label='Randomize seed', value=False)
|
275 |
+
gudiance_scale = gr.Slider(label='Guidance Scale', minimum=1, maximum=30,
|
276 |
+
value=7.5, step=0.5, interactive=True)
|
277 |
+
steps = gr.Slider(label='Inversion steps', minimum=10, maximum=500,
|
278 |
+
value=500, step=1, interactive=True)
|
279 |
+
|
280 |
+
with gr.Column(min_width=100):
|
281 |
+
inversion_prompt = gr.Textbox(lines=1, label="Inversion prompt", interactive=True, placeholder="")
|
282 |
+
batch_size = gr.Slider(label='Batch size', minimum=1, maximum=10,
|
283 |
+
value=8, step=1, interactive=True)
|
284 |
+
n_frames = gr.Slider(label='Num frames', minimum=2, maximum=200,
|
285 |
+
value=24, step=1, interactive=True)
|
286 |
+
n_timesteps = gr.Slider(label='Diffusion steps', minimum=25, maximum=100,
|
287 |
+
value=50, step=25, interactive=True)
|
288 |
+
n_fps = gr.Slider(label='Frames per second', minimum=1, maximum=60,
|
289 |
+
value=10, step=1, interactive=True)
|
290 |
+
|
291 |
+
with gr.TabItem('Plug-and-Play Parameters'):
|
292 |
+
with gr.Column(min_width=100):
|
293 |
+
pnp_attn_t = gr.Slider(label='pnp attention threshold', minimum=0, maximum=1,
|
294 |
+
value=0.5, step=0.5, interactive=True)
|
295 |
+
pnp_f_t = gr.Slider(label='pnp feature threshold', minimum=0, maximum=1,
|
296 |
+
value=0.8, step=0.05, interactive=True)
|
297 |
+
|
298 |
+
|
299 |
+
input_video.change(
|
300 |
+
fn = reset_do_inversion,
|
301 |
+
outputs = [do_inversion],
|
302 |
+
queue = False)
|
303 |
+
|
304 |
+
inversion_prompt.change(
|
305 |
+
fn = reset_do_inversion,
|
306 |
+
outputs = [do_inversion],
|
307 |
+
queue = False)
|
308 |
+
|
309 |
+
randomize_seed.change(
|
310 |
+
fn = reset_do_inversion,
|
311 |
+
outputs = [do_inversion],
|
312 |
+
queue = False)
|
313 |
+
|
314 |
+
seed.change(
|
315 |
+
fn = reset_do_inversion,
|
316 |
+
outputs = [do_inversion],
|
317 |
+
queue = False)
|
318 |
+
|
319 |
+
|
320 |
+
|
321 |
+
input_video.upload(
|
322 |
+
fn = reset_do_inversion,
|
323 |
+
outputs = [do_inversion],
|
324 |
+
queue = False).then(fn = preprocess_and_invert,
|
325 |
+
inputs = [input_video,
|
326 |
+
frames,
|
327 |
+
latents,
|
328 |
+
inverted_latents,
|
329 |
+
seed,
|
330 |
+
randomize_seed,
|
331 |
+
do_inversion,
|
332 |
+
steps,
|
333 |
+
n_timesteps,
|
334 |
+
batch_size,
|
335 |
+
n_frames,
|
336 |
+
inversion_prompt
|
337 |
+
],
|
338 |
+
outputs = [frames,
|
339 |
+
latents,
|
340 |
+
inverted_latents,
|
341 |
+
do_inversion
|
342 |
+
|
343 |
+
])
|
344 |
+
|
345 |
+
run_button.click(fn = edit_with_pnp,
|
346 |
+
inputs = [input_video,
|
347 |
+
frames,
|
348 |
+
latents,
|
349 |
+
inverted_latents,
|
350 |
+
seed,
|
351 |
+
randomize_seed,
|
352 |
+
do_inversion,
|
353 |
+
steps,
|
354 |
+
prompt,
|
355 |
+
pnp_attn_t,
|
356 |
+
pnp_f_t,
|
357 |
+
batch_size,
|
358 |
+
n_frames,
|
359 |
+
n_timesteps,
|
360 |
+
gudiance_scale,
|
361 |
+
inversion_prompt,
|
362 |
+
n_fps ],
|
363 |
+
outputs = [output_video, frames, latents, inverted_latents, do_inversion]
|
364 |
+
)
|
365 |
+
|
366 |
+
gr.Examples(
|
367 |
+
examples=get_example(),
|
368 |
+
label='Examples',
|
369 |
+
inputs=[input_video],
|
370 |
+
outputs=[output_video]
|
371 |
+
)
|
372 |
+
|
373 |
+
demo.queue()
|
374 |
+
demo.launch()
|
examples/cutting_bread.mp4
ADDED
Binary file (848 kB). View file
|
|
examples/rocket_kittens.mp4
ADDED
Binary file (561 kB). View file
|
|
examples/running_dog.mp4
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:904a4f165d70dd46164e27f3b279869debcfb01797aa4c3f0f3ae6fabea8631d
|
3 |
+
size 1443849
|
examples/wolf.mp4
ADDED
Binary file (379 kB). View file
|
|
examples/woman-running.mp4
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c622e40ca8b01a6a678eae719be376cb7969a2b7460955706a214720104880b7
|
3 |
+
size 1285788
|
preprocess_utils.py
ADDED
@@ -0,0 +1,375 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from transformers import CLIPTextModel, CLIPTokenizer, logging
|
2 |
+
from diffusers import AutoencoderKL, UNet2DConditionModel, DDIMScheduler
|
3 |
+
# suppress partial model loading warning
|
4 |
+
logging.set_verbosity_error()
|
5 |
+
|
6 |
+
import os
|
7 |
+
from tqdm import tqdm, trange
|
8 |
+
import torch
|
9 |
+
import torch.nn as nn
|
10 |
+
import argparse
|
11 |
+
from torchvision.io import write_video
|
12 |
+
from pathlib import Path
|
13 |
+
from utils import *
|
14 |
+
import torchvision.transforms as T
|
15 |
+
|
16 |
+
|
17 |
+
def get_timesteps(scheduler, num_inference_steps, strength, device):
|
18 |
+
# get the original timestep using init_timestep
|
19 |
+
init_timestep = min(int(num_inference_steps * strength), num_inference_steps)
|
20 |
+
|
21 |
+
t_start = max(num_inference_steps - init_timestep, 0)
|
22 |
+
timesteps = scheduler.timesteps[t_start:]
|
23 |
+
|
24 |
+
return timesteps, num_inference_steps - t_start
|
25 |
+
|
26 |
+
|
27 |
+
class Preprocess(nn.Module):
|
28 |
+
def __init__(self, device, opt, vae, tokenizer, text_encoder, unet,scheduler, hf_key=None):
|
29 |
+
super().__init__()
|
30 |
+
|
31 |
+
self.device = device
|
32 |
+
self.sd_version = opt["sd_version"]
|
33 |
+
self.use_depth = False
|
34 |
+
self.config = opt
|
35 |
+
|
36 |
+
print(f'[INFO] loading stable diffusion...')
|
37 |
+
if hf_key is not None:
|
38 |
+
print(f'[INFO] using hugging face custom model key: {hf_key}')
|
39 |
+
model_key = hf_key
|
40 |
+
elif self.sd_version == '2.1':
|
41 |
+
model_key = "stabilityai/stable-diffusion-2-1-base"
|
42 |
+
elif self.sd_version == '2.0':
|
43 |
+
model_key = "stabilityai/stable-diffusion-2-base"
|
44 |
+
elif self.sd_version == '1.5' or self.sd_version == 'ControlNet':
|
45 |
+
model_key = "runwayml/stable-diffusion-v1-5"
|
46 |
+
elif self.sd_version == 'depth':
|
47 |
+
model_key = "stabilityai/stable-diffusion-2-depth"
|
48 |
+
else:
|
49 |
+
raise ValueError(f'Stable-diffusion version {self.sd_version} not supported.')
|
50 |
+
|
51 |
+
self.model_key = model_key
|
52 |
+
|
53 |
+
# Create model
|
54 |
+
# self.vae = AutoencoderKL.from_pretrained(model_key, subfolder="vae", revision="fp16",
|
55 |
+
# torch_dtype=torch.float16).to(self.device)
|
56 |
+
# self.tokenizer = CLIPTokenizer.from_pretrained(model_key, subfolder="tokenizer")
|
57 |
+
# self.text_encoder = CLIPTextModel.from_pretrained(model_key, subfolder="text_encoder", revision="fp16",
|
58 |
+
# torch_dtype=torch.float16).to(self.device)
|
59 |
+
# self.unet = UNet2DConditionModel.from_pretrained(model_key, subfolder="unet", revision="fp16",
|
60 |
+
# torch_dtype=torch.float16).to(self.device)
|
61 |
+
|
62 |
+
self.vae = vae
|
63 |
+
self.tokenizer = tokenizer
|
64 |
+
self.text_encoder = text_encoder
|
65 |
+
self.unet = unet
|
66 |
+
self.scheduler=scheduler
|
67 |
+
self.total_inverted_latents = {}
|
68 |
+
|
69 |
+
self.paths, self.frames, self.latents = self.get_data(self.config["data_path"], self.config["n_frames"])
|
70 |
+
print("self.frames", self.frames.shape)
|
71 |
+
print("self.latents", self.latents.shape)
|
72 |
+
|
73 |
+
|
74 |
+
if self.sd_version == 'ControlNet':
|
75 |
+
from diffusers import ControlNetModel, StableDiffusionControlNetPipeline
|
76 |
+
controlnet = ControlNetModel.from_pretrained("lllyasviel/sd-controlnet-canny", torch_dtype=torch.float16).to(self.device)
|
77 |
+
control_pipe = StableDiffusionControlNetPipeline.from_pretrained(
|
78 |
+
"runwayml/stable-diffusion-v1-5", controlnet=controlnet, torch_dtype=torch.float16
|
79 |
+
).to(self.device)
|
80 |
+
self.unet = control_pipe.unet
|
81 |
+
self.controlnet = control_pipe.controlnet
|
82 |
+
self.canny_cond = self.get_canny_cond()
|
83 |
+
elif self.sd_version == 'depth':
|
84 |
+
self.depth_maps = self.prepare_depth_maps()
|
85 |
+
self.scheduler = scheduler
|
86 |
+
|
87 |
+
self.unet.enable_xformers_memory_efficient_attention()
|
88 |
+
print(f'[INFO] loaded stable diffusion!')
|
89 |
+
|
90 |
+
|
91 |
+
@torch.no_grad()
|
92 |
+
def prepare_depth_maps(self, model_type='DPT_Large', device='cuda'):
|
93 |
+
depth_maps = []
|
94 |
+
midas = torch.hub.load("intel-isl/MiDaS", model_type)
|
95 |
+
midas.to(device)
|
96 |
+
midas.eval()
|
97 |
+
|
98 |
+
midas_transforms = torch.hub.load("intel-isl/MiDaS", "transforms")
|
99 |
+
|
100 |
+
if model_type == "DPT_Large" or model_type == "DPT_Hybrid":
|
101 |
+
transform = midas_transforms.dpt_transform
|
102 |
+
else:
|
103 |
+
transform = midas_transforms.small_transform
|
104 |
+
|
105 |
+
for i in range(len(self.paths)):
|
106 |
+
img = cv2.imread(self.paths[i])
|
107 |
+
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
|
108 |
+
|
109 |
+
latent_h = img.shape[0] // 8
|
110 |
+
latent_w = img.shape[1] // 8
|
111 |
+
|
112 |
+
input_batch = transform(img).to(device)
|
113 |
+
prediction = midas(input_batch)
|
114 |
+
|
115 |
+
depth_map = torch.nn.functional.interpolate(
|
116 |
+
prediction.unsqueeze(1),
|
117 |
+
size=(latent_h, latent_w),
|
118 |
+
mode="bicubic",
|
119 |
+
align_corners=False,
|
120 |
+
)
|
121 |
+
depth_min = torch.amin(depth_map, dim=[1, 2, 3], keepdim=True)
|
122 |
+
depth_max = torch.amax(depth_map, dim=[1, 2, 3], keepdim=True)
|
123 |
+
depth_map = 2.0 * (depth_map - depth_min) / (depth_max - depth_min) - 1.0
|
124 |
+
depth_maps.append(depth_map)
|
125 |
+
|
126 |
+
return torch.cat(depth_maps).to(self.device).to(torch.float16)
|
127 |
+
|
128 |
+
@torch.no_grad()
|
129 |
+
def get_canny_cond(self):
|
130 |
+
canny_cond = []
|
131 |
+
for image in self.frames.cpu().permute(0, 2, 3, 1):
|
132 |
+
image = np.uint8(np.array(255 * image))
|
133 |
+
low_threshold = 100
|
134 |
+
high_threshold = 200
|
135 |
+
|
136 |
+
image = cv2.Canny(image, low_threshold, high_threshold)
|
137 |
+
image = image[:, :, None]
|
138 |
+
image = np.concatenate([image, image, image], axis=2)
|
139 |
+
image = torch.from_numpy((image.astype(np.float32) / 255.0))
|
140 |
+
canny_cond.append(image)
|
141 |
+
canny_cond = torch.stack(canny_cond).permute(0, 3, 1, 2).to(self.device).to(torch.float16)
|
142 |
+
return canny_cond
|
143 |
+
|
144 |
+
def controlnet_pred(self, latent_model_input, t, text_embed_input, controlnet_cond):
|
145 |
+
down_block_res_samples, mid_block_res_sample = self.controlnet(
|
146 |
+
latent_model_input,
|
147 |
+
t,
|
148 |
+
encoder_hidden_states=text_embed_input,
|
149 |
+
controlnet_cond=controlnet_cond,
|
150 |
+
conditioning_scale=1,
|
151 |
+
return_dict=False,
|
152 |
+
)
|
153 |
+
|
154 |
+
# apply the denoising network
|
155 |
+
noise_pred = self.unet(
|
156 |
+
latent_model_input,
|
157 |
+
t,
|
158 |
+
encoder_hidden_states=text_embed_input,
|
159 |
+
cross_attention_kwargs={},
|
160 |
+
down_block_additional_residuals=down_block_res_samples,
|
161 |
+
mid_block_additional_residual=mid_block_res_sample,
|
162 |
+
return_dict=False,
|
163 |
+
)[0]
|
164 |
+
return noise_pred
|
165 |
+
|
166 |
+
@torch.no_grad()
|
167 |
+
def get_text_embeds(self, prompt, negative_prompt, device="cuda"):
|
168 |
+
text_input = self.tokenizer(prompt, padding='max_length', max_length=self.tokenizer.model_max_length,
|
169 |
+
truncation=True, return_tensors='pt')
|
170 |
+
text_embeddings = self.text_encoder(text_input.input_ids.to(device))[0]
|
171 |
+
uncond_input = self.tokenizer(negative_prompt, padding='max_length', max_length=self.tokenizer.model_max_length,
|
172 |
+
return_tensors='pt')
|
173 |
+
uncond_embeddings = self.text_encoder(uncond_input.input_ids.to(device))[0]
|
174 |
+
text_embeddings = torch.cat([uncond_embeddings, text_embeddings])
|
175 |
+
return text_embeddings
|
176 |
+
|
177 |
+
@torch.no_grad()
|
178 |
+
def decode_latents(self, latents):
|
179 |
+
decoded = []
|
180 |
+
batch_size = 8
|
181 |
+
for b in range(0, latents.shape[0], batch_size):
|
182 |
+
latents_batch = 1 / 0.18215 * latents[b:b + batch_size]
|
183 |
+
imgs = self.vae.decode(latents_batch).sample
|
184 |
+
imgs = (imgs / 2 + 0.5).clamp(0, 1)
|
185 |
+
decoded.append(imgs)
|
186 |
+
return torch.cat(decoded)
|
187 |
+
|
188 |
+
@torch.no_grad()
|
189 |
+
def encode_imgs(self, imgs, batch_size=10, deterministic=True):
|
190 |
+
imgs = 2 * imgs - 1
|
191 |
+
latents = []
|
192 |
+
for i in range(0, len(imgs), batch_size):
|
193 |
+
posterior = self.vae.encode(imgs[i:i + batch_size]).latent_dist
|
194 |
+
latent = posterior.mean if deterministic else posterior.sample()
|
195 |
+
latents.append(latent * 0.18215)
|
196 |
+
latents = torch.cat(latents)
|
197 |
+
return latents
|
198 |
+
|
199 |
+
def get_data(self, frames_path, n_frames):
|
200 |
+
|
201 |
+
# load frames
|
202 |
+
if not self.config["frames"]:
|
203 |
+
paths = [f"{frames_path}/%05d.png" % i for i in range(n_frames)]
|
204 |
+
print(paths)
|
205 |
+
if not os.path.exists(paths[0]):
|
206 |
+
paths = [f"{frames_path}/%05d.jpg" % i for i in range(n_frames)]
|
207 |
+
self.paths = paths
|
208 |
+
frames = [Image.open(path).convert('RGB') for path in paths]
|
209 |
+
if frames[0].size[0] == frames[0].size[1]:
|
210 |
+
frames = [frame.resize((512, 512), resample=Image.Resampling.LANCZOS) for frame in frames]
|
211 |
+
else:
|
212 |
+
frames = self.config["frames"][:n_frames]
|
213 |
+
frames = torch.stack([T.ToTensor()(frame) for frame in frames]).to(torch.float16).to(self.device)
|
214 |
+
# encode to latents
|
215 |
+
latents = self.encode_imgs(frames, deterministic=True).to(torch.float16).to(self.device)
|
216 |
+
print("frames", frames.shape)
|
217 |
+
print("latents", latents.shape)
|
218 |
+
|
219 |
+
if not self.config["frames"]:
|
220 |
+
return paths, frames, latents
|
221 |
+
else:
|
222 |
+
return None, frames, latents
|
223 |
+
|
224 |
+
@torch.no_grad()
|
225 |
+
def ddim_inversion(self, cond, latent_frames, save_path, batch_size, save_latents=True, timesteps_to_save=None):
|
226 |
+
timesteps = reversed(self.scheduler.timesteps)
|
227 |
+
timesteps_to_save = timesteps_to_save if timesteps_to_save is not None else timesteps
|
228 |
+
|
229 |
+
return_inverted_latents = self.config["frames"] is not None
|
230 |
+
for i, t in enumerate(tqdm(timesteps)):
|
231 |
+
for b in range(0, latent_frames.shape[0], int(batch_size)):
|
232 |
+
x_batch = latent_frames[b:b + batch_size]
|
233 |
+
model_input = x_batch
|
234 |
+
cond_batch = cond.repeat(x_batch.shape[0], 1, 1)
|
235 |
+
if self.sd_version == 'depth':
|
236 |
+
depth_maps = torch.cat([self.depth_maps[b: b + batch_size]])
|
237 |
+
model_input = torch.cat([x_batch, depth_maps],dim=1)
|
238 |
+
|
239 |
+
alpha_prod_t = self.scheduler.alphas_cumprod[t]
|
240 |
+
alpha_prod_t_prev = (
|
241 |
+
self.scheduler.alphas_cumprod[timesteps[i - 1]]
|
242 |
+
if i > 0 else self.scheduler.final_alpha_cumprod
|
243 |
+
)
|
244 |
+
|
245 |
+
mu = alpha_prod_t ** 0.5
|
246 |
+
mu_prev = alpha_prod_t_prev ** 0.5
|
247 |
+
sigma = (1 - alpha_prod_t) ** 0.5
|
248 |
+
sigma_prev = (1 - alpha_prod_t_prev) ** 0.5
|
249 |
+
|
250 |
+
eps = self.unet(model_input, t, encoder_hidden_states=cond_batch).sample if self.sd_version != 'ControlNet' \
|
251 |
+
else self.controlnet_pred(x_batch, t, cond_batch, torch.cat([self.canny_cond[b: b + batch_size]]))
|
252 |
+
pred_x0 = (x_batch - sigma_prev * eps) / mu_prev
|
253 |
+
latent_frames[b:b + batch_size] = mu * pred_x0 + sigma * eps
|
254 |
+
|
255 |
+
if return_inverted_latents and t in timesteps_to_save:
|
256 |
+
self.total_inverted_latents[f'noisy_latents_{t}'] = latent_frames.clone()
|
257 |
+
|
258 |
+
if save_latents and t in timesteps_to_save:
|
259 |
+
torch.save(latent_frames, os.path.join(save_path, 'latents', f'noisy_latents_{t}.pt'))
|
260 |
+
|
261 |
+
if save_latents:
|
262 |
+
torch.save(latent_frames, os.path.join(save_path, 'latents', f'noisy_latents_{t}.pt'))
|
263 |
+
if return_inverted_latents:
|
264 |
+
self.total_inverted_latents[f'noisy_latents_{t}'] = latent_frames.clone()
|
265 |
+
|
266 |
+
return latent_frames
|
267 |
+
|
268 |
+
@torch.no_grad()
|
269 |
+
def ddim_sample(self, x, cond, batch_size):
|
270 |
+
timesteps = self.scheduler.timesteps
|
271 |
+
for i, t in enumerate(tqdm(timesteps)):
|
272 |
+
for b in range(0, x.shape[0], batch_size):
|
273 |
+
x_batch = x[b:b + batch_size]
|
274 |
+
model_input = x_batch
|
275 |
+
cond_batch = cond.repeat(x_batch.shape[0], 1, 1)
|
276 |
+
|
277 |
+
if self.sd_version == 'depth':
|
278 |
+
depth_maps = torch.cat([self.depth_maps[b: b + batch_size]])
|
279 |
+
model_input = torch.cat([x_batch, depth_maps],dim=1)
|
280 |
+
|
281 |
+
alpha_prod_t = self.scheduler.alphas_cumprod[t]
|
282 |
+
alpha_prod_t_prev = (
|
283 |
+
self.scheduler.alphas_cumprod[timesteps[i + 1]]
|
284 |
+
if i < len(timesteps) - 1
|
285 |
+
else self.scheduler.final_alpha_cumprod
|
286 |
+
)
|
287 |
+
mu = alpha_prod_t ** 0.5
|
288 |
+
sigma = (1 - alpha_prod_t) ** 0.5
|
289 |
+
mu_prev = alpha_prod_t_prev ** 0.5
|
290 |
+
sigma_prev = (1 - alpha_prod_t_prev) ** 0.5
|
291 |
+
|
292 |
+
eps = self.unet(model_input, t, encoder_hidden_states=cond_batch).sample if self.sd_version != 'ControlNet' \
|
293 |
+
else self.controlnet_pred(x_batch, t, cond_batch, torch.cat([self.canny_cond[b: b + batch_size]]))
|
294 |
+
|
295 |
+
pred_x0 = (x_batch - sigma * eps) / mu
|
296 |
+
x[b:b + batch_size] = mu_prev * pred_x0 + sigma_prev * eps
|
297 |
+
return x
|
298 |
+
|
299 |
+
@torch.no_grad()
|
300 |
+
def extract_latents(self,
|
301 |
+
num_steps,
|
302 |
+
save_path,
|
303 |
+
batch_size,
|
304 |
+
timesteps_to_save,
|
305 |
+
inversion_prompt='',
|
306 |
+
reconstruct=False):
|
307 |
+
self.scheduler.set_timesteps(num_steps)
|
308 |
+
cond = self.get_text_embeds(inversion_prompt, "")[1].unsqueeze(0)
|
309 |
+
latent_frames = self.latents
|
310 |
+
print("latent_frames", latent_frames.shape)
|
311 |
+
|
312 |
+
inverted_x= self.ddim_inversion(cond,
|
313 |
+
latent_frames,
|
314 |
+
save_path,
|
315 |
+
batch_size=batch_size,
|
316 |
+
save_latents=True if save_path else False,
|
317 |
+
timesteps_to_save=timesteps_to_save)
|
318 |
+
|
319 |
+
|
320 |
+
|
321 |
+
# print("total_inverted_latents", len(total_inverted_latents.keys()))
|
322 |
+
|
323 |
+
if reconstruct:
|
324 |
+
latent_reconstruction = self.ddim_sample(inverted_x, cond, batch_size=batch_size)
|
325 |
+
|
326 |
+
rgb_reconstruction = self.decode_latents(latent_reconstruction)
|
327 |
+
return self.frames, self.latents, self.total_inverted_latents, rgb_reconstruction
|
328 |
+
|
329 |
+
return self.frames, self.latents, self.total_inverted_latents, None
|
330 |
+
|
331 |
+
|
332 |
+
def prep(opt):
|
333 |
+
# timesteps to save
|
334 |
+
if opt["sd_version"] == '2.1':
|
335 |
+
model_key = "stabilityai/stable-diffusion-2-1-base"
|
336 |
+
elif opt["sd_version"] == '2.0':
|
337 |
+
model_key = "stabilityai/stable-diffusion-2-base"
|
338 |
+
elif opt["sd_version"] == '1.5' or opt["sd_version"] == 'ControlNet':
|
339 |
+
model_key = "runwayml/stable-diffusion-v1-5"
|
340 |
+
elif opt["sd_version"] == 'depth':
|
341 |
+
model_key = "stabilityai/stable-diffusion-2-depth"
|
342 |
+
toy_scheduler = DDIMScheduler.from_pretrained(model_key, subfolder="scheduler")
|
343 |
+
toy_scheduler.set_timesteps(opt["save_steps"])
|
344 |
+
timesteps_to_save, num_inference_steps = get_timesteps(toy_scheduler, num_inference_steps=opt["save_steps"],
|
345 |
+
strength=1.0,
|
346 |
+
device=device)
|
347 |
+
|
348 |
+
seed_everything(opt["seed"])
|
349 |
+
if not opt["frames"]: # original non demo setting
|
350 |
+
save_path = os.path.join(opt["save_dir"],
|
351 |
+
f'sd_{opt["sd_version"]}',
|
352 |
+
Path(opt["data_path"]).stem,
|
353 |
+
f'steps_{opt["steps"]}',
|
354 |
+
f'nframes_{opt["n_frames"]}')
|
355 |
+
os.makedirs(os.path.join(save_path, f'latents'), exist_ok=True)
|
356 |
+
add_dict_to_yaml_file(os.path.join(opt["save_dir"], 'inversion_prompts.yaml'), Path(opt["data_path"]).stem, opt["inversion_prompt"])
|
357 |
+
# save inversion prompt in a txt file
|
358 |
+
with open(os.path.join(save_path, 'inversion_prompt.txt'), 'w') as f:
|
359 |
+
f.write(opt["inversion_prompt"])
|
360 |
+
else:
|
361 |
+
save_path = None
|
362 |
+
|
363 |
+
model = Preprocess(device, opt)
|
364 |
+
|
365 |
+
frames, latents, total_inverted_latents, rgb_reconstruction = model.extract_latents(
|
366 |
+
num_steps=model.config["steps"],
|
367 |
+
save_path=save_path,
|
368 |
+
batch_size=model.config["batch_size"],
|
369 |
+
timesteps_to_save=timesteps_to_save,
|
370 |
+
inversion_prompt=model.config["inversion_prompt"],
|
371 |
+
)
|
372 |
+
|
373 |
+
|
374 |
+
return frames, latents, total_inverted_latents, rgb_reconstruction
|
375 |
+
|
requirements.txt
ADDED
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
pillow
|
2 |
+
diffusers
|
3 |
+
ftfy
|
4 |
+
transformers
|
5 |
+
opencv-python
|
6 |
+
tqdm
|
7 |
+
numpy
|
8 |
+
pyyaml
|
9 |
+
accelerate
|
10 |
+
xformers
|
11 |
+
tensorboard
|
12 |
+
kornia
|
13 |
+
av
|
14 |
+
torchvision==0.15.2
|
style.css
ADDED
@@ -0,0 +1,91 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
/*
|
2 |
+
This CSS file is modified from:
|
3 |
+
https://huggingface.co/spaces/DeepFloyd/IF/blob/main/style.css
|
4 |
+
*/
|
5 |
+
|
6 |
+
h1 {
|
7 |
+
text-align: center;
|
8 |
+
}
|
9 |
+
|
10 |
+
.gradio-container {
|
11 |
+
font-family: 'IBM Plex Sans', sans-serif;
|
12 |
+
}
|
13 |
+
|
14 |
+
.gr-button {
|
15 |
+
color: white;
|
16 |
+
border-color: black;
|
17 |
+
background: black;
|
18 |
+
}
|
19 |
+
|
20 |
+
input[type='range'] {
|
21 |
+
accent-color: black;
|
22 |
+
}
|
23 |
+
|
24 |
+
.dark input[type='range'] {
|
25 |
+
accent-color: #dfdfdf;
|
26 |
+
}
|
27 |
+
|
28 |
+
.container {
|
29 |
+
max-width: 730px;
|
30 |
+
margin: auto;
|
31 |
+
}
|
32 |
+
|
33 |
+
.gr-button:focus {
|
34 |
+
border-color: rgb(147 197 253 / var(--tw-border-opacity));
|
35 |
+
outline: none;
|
36 |
+
box-shadow: var(--tw-ring-offset-shadow), var(--tw-ring-shadow), var(--tw-shadow, 0 0 #0000);
|
37 |
+
--tw-border-opacity: 1;
|
38 |
+
--tw-ring-offset-shadow: var(--tw-ring-inset) 0 0 0 var(--tw-ring-offset-width) var(--tw-ring-offset-color);
|
39 |
+
--tw-ring-shadow: var(--tw-ring-inset) 0 0 0 calc(3px var(--tw-ring-offset-width)) var(--tw-ring-color);
|
40 |
+
--tw-ring-color: rgb(191 219 254 / var(--tw-ring-opacity));
|
41 |
+
--tw-ring-opacity: .5;
|
42 |
+
}
|
43 |
+
|
44 |
+
.gr-form {
|
45 |
+
flex: 1 1 50%;
|
46 |
+
border-top-right-radius: 0;
|
47 |
+
border-bottom-right-radius: 0;
|
48 |
+
}
|
49 |
+
|
50 |
+
#prompt-container {
|
51 |
+
gap: 0;
|
52 |
+
}
|
53 |
+
|
54 |
+
#prompt-text-input,
|
55 |
+
#negative-prompt-text-input {
|
56 |
+
padding: .45rem 0.625rem
|
57 |
+
}
|
58 |
+
|
59 |
+
/* #component-16 {
|
60 |
+
border-top-width: 1px !important;
|
61 |
+
margin-top: 1em
|
62 |
+
} */
|
63 |
+
|
64 |
+
.image_duplication {
|
65 |
+
position: absolute;
|
66 |
+
width: 100px;
|
67 |
+
left: 50px
|
68 |
+
}
|
69 |
+
|
70 |
+
#component-0 {
|
71 |
+
max-width: 730px;
|
72 |
+
margin: auto;
|
73 |
+
padding-top: 1.5rem;
|
74 |
+
}
|
75 |
+
|
76 |
+
#share-btn-container {
|
77 |
+
display: flex; padding-left: 0.5rem !important; padding-right: 0.5rem !important; background-color: #000000; justify-content: center; align-items: center; border-radius: 9999px !important; width: 13rem; margin-left: auto;
|
78 |
+
}
|
79 |
+
#share-btn {
|
80 |
+
all: initial; color: #ffffff;font-weight: 600; cursor:pointer; font-family: 'IBM Plex Sans', sans-serif; margin-left: 0.5rem !important; padding-top: 0.25rem !important; padding-bottom: 0.25rem !important;
|
81 |
+
}
|
82 |
+
#share-btn * {
|
83 |
+
all: unset;
|
84 |
+
}
|
85 |
+
#share-btn-container div:nth-child(-n+2){
|
86 |
+
width: auto !important;
|
87 |
+
min-height: 0px !important;
|
88 |
+
}
|
89 |
+
#share-btn-container .wrap {
|
90 |
+
display: none !important;
|
91 |
+
}
|
tokenflow_pnp.py
ADDED
@@ -0,0 +1,364 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import glob
|
2 |
+
import os
|
3 |
+
import numpy as np
|
4 |
+
import cv2
|
5 |
+
from pathlib import Path
|
6 |
+
import torch
|
7 |
+
import torch.nn as nn
|
8 |
+
import torchvision.transforms as T
|
9 |
+
import argparse
|
10 |
+
from PIL import Image
|
11 |
+
import yaml
|
12 |
+
from tqdm import tqdm
|
13 |
+
from transformers import logging
|
14 |
+
from diffusers import DDIMScheduler, StableDiffusionPipeline
|
15 |
+
|
16 |
+
from tokenflow_utils import *
|
17 |
+
from utils import save_video, seed_everything
|
18 |
+
|
19 |
+
# suppress partial model loading warning
|
20 |
+
logging.set_verbosity_error()
|
21 |
+
|
22 |
+
VAE_BATCH_SIZE = 10
|
23 |
+
|
24 |
+
|
25 |
+
class TokenFlow(nn.Module):
|
26 |
+
def __init__(self, config,
|
27 |
+
pipe,
|
28 |
+
frames=None,
|
29 |
+
# latents = None,
|
30 |
+
inverted_latents = None):
|
31 |
+
super().__init__()
|
32 |
+
self.config = config
|
33 |
+
self.device = config["device"]
|
34 |
+
|
35 |
+
sd_version = config["sd_version"]
|
36 |
+
self.sd_version = sd_version
|
37 |
+
if sd_version == '2.1':
|
38 |
+
model_key = "stabilityai/stable-diffusion-2-1-base"
|
39 |
+
elif sd_version == '2.0':
|
40 |
+
model_key = "stabilityai/stable-diffusion-2-base"
|
41 |
+
elif sd_version == '1.5':
|
42 |
+
model_key = "runwayml/stable-diffusion-v1-5"
|
43 |
+
elif sd_version == 'depth':
|
44 |
+
model_key = "stabilityai/stable-diffusion-2-depth"
|
45 |
+
else:
|
46 |
+
raise ValueError(f'Stable-diffusion version {sd_version} not supported.')
|
47 |
+
|
48 |
+
# Create SD models
|
49 |
+
print('Loading SD model')
|
50 |
+
|
51 |
+
# pipe = StableDiffusionPipeline.from_pretrained(model_key, torch_dtype=torch.float16).to("cuda")
|
52 |
+
# pipe.enable_xformers_memory_efficient_attention()
|
53 |
+
|
54 |
+
self.vae = pipe.vae
|
55 |
+
self.tokenizer = pipe.tokenizer
|
56 |
+
self.text_encoder = pipe.text_encoder
|
57 |
+
self.unet = pipe.unet
|
58 |
+
|
59 |
+
self.scheduler = DDIMScheduler.from_pretrained(model_key, subfolder="scheduler")
|
60 |
+
self.scheduler.set_timesteps(config["n_timesteps"], device=self.device)
|
61 |
+
print('SD model loaded')
|
62 |
+
|
63 |
+
# data
|
64 |
+
self.frames, self.inverted_latents = frames, inverted_latents
|
65 |
+
self.latents_path = self.get_latents_path()
|
66 |
+
|
67 |
+
# load frames
|
68 |
+
self.paths, self.frames, self.latents, self.eps = self.get_data()
|
69 |
+
|
70 |
+
if self.sd_version == 'depth':
|
71 |
+
self.depth_maps = self.prepare_depth_maps()
|
72 |
+
|
73 |
+
self.text_embeds = self.get_text_embeds(config["prompt"], config["negative_prompt"])
|
74 |
+
# pnp_inversion_prompt = self.get_pnp_inversion_prompt()
|
75 |
+
self.pnp_guidance_embeds = self.get_text_embeds(config["pnp_inversion_prompt"], config["pnp_inversion_prompt"]).chunk(2)[0]
|
76 |
+
|
77 |
+
@torch.no_grad()
|
78 |
+
def prepare_depth_maps(self, model_type='DPT_Large', device='cuda'):
|
79 |
+
depth_maps = []
|
80 |
+
midas = torch.hub.load("intel-isl/MiDaS", model_type)
|
81 |
+
midas.to(device)
|
82 |
+
midas.eval()
|
83 |
+
|
84 |
+
midas_transforms = torch.hub.load("intel-isl/MiDaS", "transforms")
|
85 |
+
|
86 |
+
if model_type == "DPT_Large" or model_type == "DPT_Hybrid":
|
87 |
+
transform = midas_transforms.dpt_transform
|
88 |
+
else:
|
89 |
+
transform = midas_transforms.small_transform
|
90 |
+
|
91 |
+
for i in range(len(self.paths)):
|
92 |
+
img = cv2.imread(self.paths[i])
|
93 |
+
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
|
94 |
+
|
95 |
+
latent_h = img.shape[0] // 8
|
96 |
+
latent_w = img.shape[1] // 8
|
97 |
+
|
98 |
+
input_batch = transform(img).to(device)
|
99 |
+
prediction = midas(input_batch)
|
100 |
+
|
101 |
+
depth_map = torch.nn.functional.interpolate(
|
102 |
+
prediction.unsqueeze(1),
|
103 |
+
size=(latent_h, latent_w),
|
104 |
+
mode="bicubic",
|
105 |
+
align_corners=False,
|
106 |
+
)
|
107 |
+
depth_min = torch.amin(depth_map, dim=[1, 2, 3], keepdim=True)
|
108 |
+
depth_max = torch.amax(depth_map, dim=[1, 2, 3], keepdim=True)
|
109 |
+
depth_map = 2.0 * (depth_map - depth_min) / (depth_max - depth_min) - 1.0
|
110 |
+
depth_maps.append(depth_map)
|
111 |
+
|
112 |
+
return torch.cat(depth_maps).to(torch.float16).to(self.device)
|
113 |
+
|
114 |
+
def get_pnp_inversion_prompt(self):
|
115 |
+
inv_prompts_path = os.path.join(str(Path(self.latents_path).parent), 'inversion_prompt.txt')
|
116 |
+
# read inversion prompt
|
117 |
+
with open(inv_prompts_path, 'r') as f:
|
118 |
+
inv_prompt = f.read()
|
119 |
+
return inv_prompt
|
120 |
+
|
121 |
+
def get_latents_path(self):
|
122 |
+
read_from_files = self.frames is None
|
123 |
+
# read_from_files = True
|
124 |
+
if read_from_files:
|
125 |
+
latents_path = os.path.join(self.config["latents_path"], f'sd_{self.config["sd_version"]}',
|
126 |
+
Path(self.config["data_path"]).stem, f'steps_{self.config["n_inversion_steps"]}')
|
127 |
+
latents_path = [x for x in glob.glob(f'{latents_path}/*') if '.' not in Path(x).name]
|
128 |
+
n_frames = [int([x for x in latents_path[i].split('/') if 'nframes' in x][0].split('_')[1]) for i in range(len(latents_path))]
|
129 |
+
print("n_frames", n_frames)
|
130 |
+
latents_path = latents_path[np.argmax(n_frames)]
|
131 |
+
print("latents_path", latents_path)
|
132 |
+
self.config["n_frames"] = min(max(n_frames), self.config["n_frames"])
|
133 |
+
|
134 |
+
else:
|
135 |
+
n_frames = self.frames.shape[0]
|
136 |
+
self.config["n_frames"] = min(n_frames, self.config["n_frames"])
|
137 |
+
|
138 |
+
if self.config["n_frames"] % self.config["batch_size"] != 0:
|
139 |
+
# make n_frames divisible by batch_size
|
140 |
+
self.config["n_frames"] = self.config["n_frames"] - (self.config["n_frames"] % self.config["batch_size"])
|
141 |
+
print("Number of frames: ", self.config["n_frames"])
|
142 |
+
if read_from_files:
|
143 |
+
print("YOOOOOOO", os.path.join(latents_path, 'latents'))
|
144 |
+
return os.path.join(latents_path, 'latents')
|
145 |
+
else:
|
146 |
+
return None
|
147 |
+
|
148 |
+
@torch.no_grad()
|
149 |
+
def get_text_embeds(self, prompt, negative_prompt, batch_size=1):
|
150 |
+
# Tokenize text and get embeddings
|
151 |
+
text_input = self.tokenizer(prompt, padding='max_length', max_length=self.tokenizer.model_max_length,
|
152 |
+
truncation=True, return_tensors='pt')
|
153 |
+
text_embeddings = self.text_encoder(text_input.input_ids.to(self.device))[0]
|
154 |
+
|
155 |
+
# Do the same for unconditional embeddings
|
156 |
+
uncond_input = self.tokenizer(negative_prompt, padding='max_length', max_length=self.tokenizer.model_max_length,
|
157 |
+
return_tensors='pt')
|
158 |
+
|
159 |
+
uncond_embeddings = self.text_encoder(uncond_input.input_ids.to(self.device))[0]
|
160 |
+
|
161 |
+
# Cat for final embeddings
|
162 |
+
text_embeddings = torch.cat([uncond_embeddings] * batch_size + [text_embeddings] * batch_size)
|
163 |
+
return text_embeddings
|
164 |
+
|
165 |
+
@torch.no_grad()
|
166 |
+
def encode_imgs(self, imgs, batch_size=VAE_BATCH_SIZE, deterministic=False):
|
167 |
+
imgs = 2 * imgs - 1
|
168 |
+
latents = []
|
169 |
+
for i in range(0, len(imgs), batch_size):
|
170 |
+
posterior = self.vae.encode(imgs[i:i + batch_size]).latent_dist
|
171 |
+
latent = posterior.mean if deterministic else posterior.sample()
|
172 |
+
latents.append(latent * 0.18215)
|
173 |
+
latents = torch.cat(latents)
|
174 |
+
return latents
|
175 |
+
|
176 |
+
@torch.no_grad()
|
177 |
+
def decode_latents(self, latents, batch_size=VAE_BATCH_SIZE):
|
178 |
+
latents = 1 / 0.18215 * latents
|
179 |
+
imgs = []
|
180 |
+
for i in range(0, len(latents), batch_size):
|
181 |
+
imgs.append(self.vae.decode(latents[i:i + batch_size]).sample)
|
182 |
+
imgs = torch.cat(imgs)
|
183 |
+
imgs = (imgs / 2 + 0.5).clamp(0, 1)
|
184 |
+
return imgs
|
185 |
+
|
186 |
+
|
187 |
+
def get_data(self):
|
188 |
+
read_from_files = self.frames is None
|
189 |
+
# read_from_files = True
|
190 |
+
if read_from_files:
|
191 |
+
# load frames
|
192 |
+
paths = [os.path.join(self.config["data_path"], "%05d.jpg" % idx) for idx in
|
193 |
+
range(self.config["n_frames"])]
|
194 |
+
if not os.path.exists(paths[0]):
|
195 |
+
paths = [os.path.join(self.config["data_path"], "%05d.png" % idx) for idx in
|
196 |
+
range(self.config["n_frames"])]
|
197 |
+
frames = [Image.open(paths[idx]).convert('RGB') for idx in range(self.config["n_frames"])]
|
198 |
+
if frames[0].size[0] == frames[0].size[1]:
|
199 |
+
frames = [frame.resize((512, 512), resample=Image.Resampling.LANCZOS) for frame in frames]
|
200 |
+
frames = torch.stack([T.ToTensor()(frame) for frame in frames]).to(torch.float16).to(self.device)
|
201 |
+
save_video(frames, f'{self.config["output_path"]}/input_fps10.mp4', fps=10)
|
202 |
+
save_video(frames, f'{self.config["output_path"]}/input_fps20.mp4', fps=20)
|
203 |
+
save_video(frames, f'{self.config["output_path"]}/input_fps30.mp4', fps=30)
|
204 |
+
else:
|
205 |
+
frames = self.frames
|
206 |
+
# encode to latents
|
207 |
+
latents = self.encode_imgs(frames, deterministic=True).to(torch.float16).to(self.device)
|
208 |
+
# get noise
|
209 |
+
eps = self.get_ddim_eps(latents, range(self.config["n_frames"])).to(torch.float16).to(self.device)
|
210 |
+
if not read_from_files:
|
211 |
+
return None, frames, latents, eps
|
212 |
+
return paths, frames, latents, eps
|
213 |
+
|
214 |
+
def get_ddim_eps(self, latent, indices):
|
215 |
+
read_from_files = self.inverted_latents is None
|
216 |
+
# read_from_files = True
|
217 |
+
if read_from_files:
|
218 |
+
noisest = max([int(x.split('_')[-1].split('.')[0]) for x in glob.glob(os.path.join(self.latents_path, f'noisy_latents_*.pt'))])
|
219 |
+
print("noisets:", noisest)
|
220 |
+
print("indecies:", indices)
|
221 |
+
latents_path = os.path.join(self.latents_path, f'noisy_latents_{noisest}.pt')
|
222 |
+
noisy_latent = torch.load(latents_path)[indices].to(self.device)
|
223 |
+
|
224 |
+
# path = os.path.join('test_latents', f'noisy_latents_{noisest}.pt')
|
225 |
+
# f_noisy_latent = torch.load(path)[indices].to(self.device)
|
226 |
+
# print(f_noisy_latent==noisy_latent)
|
227 |
+
else:
|
228 |
+
noisest = max([int(key.split("_")[-1]) for key in self.inverted_latents.keys()])
|
229 |
+
print("noisets:", noisest)
|
230 |
+
print("indecies:", indices)
|
231 |
+
noisy_latent = self.inverted_latents[f'noisy_latents_{noisest}'][indices]
|
232 |
+
|
233 |
+
alpha_prod_T = self.scheduler.alphas_cumprod[noisest]
|
234 |
+
mu_T, sigma_T = alpha_prod_T ** 0.5, (1 - alpha_prod_T) ** 0.5
|
235 |
+
eps = (noisy_latent - mu_T * latent) / sigma_T
|
236 |
+
return eps
|
237 |
+
|
238 |
+
@torch.no_grad()
|
239 |
+
def denoise_step(self, x, t, indices):
|
240 |
+
# register the time step and features in pnp injection modules
|
241 |
+
read_files = self.inverted_latents is None
|
242 |
+
|
243 |
+
if read_files:
|
244 |
+
source_latents = load_source_latents_t(t, self.latents_path)[indices]
|
245 |
+
|
246 |
+
else:
|
247 |
+
source_latents = self.inverted_latents[f'noisy_latents_{t}'][indices]
|
248 |
+
|
249 |
+
latent_model_input = torch.cat([source_latents] + ([x] * 2))
|
250 |
+
if self.sd_version == 'depth':
|
251 |
+
latent_model_input = torch.cat([latent_model_input, torch.cat([self.depth_maps[indices]] * 3)], dim=1)
|
252 |
+
|
253 |
+
register_time(self, t.item())
|
254 |
+
|
255 |
+
# compute text embeddings
|
256 |
+
text_embed_input = torch.cat([self.pnp_guidance_embeds.repeat(len(indices), 1, 1),
|
257 |
+
torch.repeat_interleave(self.text_embeds, len(indices), dim=0)])
|
258 |
+
|
259 |
+
# apply the denoising network
|
260 |
+
noise_pred = self.unet(latent_model_input, t, encoder_hidden_states=text_embed_input)['sample']
|
261 |
+
|
262 |
+
# perform guidance
|
263 |
+
_, noise_pred_uncond, noise_pred_cond = noise_pred.chunk(3)
|
264 |
+
noise_pred = noise_pred_uncond + self.config["guidance_scale"] * (noise_pred_cond - noise_pred_uncond)
|
265 |
+
|
266 |
+
# compute the denoising step with the reference model
|
267 |
+
denoised_latent = self.scheduler.step(noise_pred, t, x)['prev_sample']
|
268 |
+
return denoised_latent
|
269 |
+
|
270 |
+
@torch.autocast(dtype=torch.float16, device_type='cuda')
|
271 |
+
def batched_denoise_step(self, x, t, indices):
|
272 |
+
batch_size = self.config["batch_size"]
|
273 |
+
denoised_latents = []
|
274 |
+
pivotal_idx = torch.randint(batch_size, (len(x)//batch_size,)) + torch.arange(0,len(x),batch_size)
|
275 |
+
|
276 |
+
register_pivotal(self, True)
|
277 |
+
self.denoise_step(x[pivotal_idx], t, indices[pivotal_idx])
|
278 |
+
register_pivotal(self, False)
|
279 |
+
for i, b in enumerate(range(0, len(x), batch_size)):
|
280 |
+
register_batch_idx(self, i)
|
281 |
+
denoised_latents.append(self.denoise_step(x[b:b + batch_size], t, indices[b:b + batch_size]))
|
282 |
+
denoised_latents = torch.cat(denoised_latents)
|
283 |
+
return denoised_latents
|
284 |
+
|
285 |
+
def init_method(self, conv_injection_t, qk_injection_t):
|
286 |
+
self.qk_injection_timesteps = self.scheduler.timesteps[:qk_injection_t] if qk_injection_t >= 0 else []
|
287 |
+
self.conv_injection_timesteps = self.scheduler.timesteps[:conv_injection_t] if conv_injection_t >= 0 else []
|
288 |
+
register_extended_attention_pnp(self, self.qk_injection_timesteps)
|
289 |
+
register_conv_injection(self, self.conv_injection_timesteps)
|
290 |
+
set_tokenflow(self.unet)
|
291 |
+
|
292 |
+
def save_vae_recon(self):
|
293 |
+
os.makedirs(f'{self.config["output_path"]}/vae_recon', exist_ok=True)
|
294 |
+
decoded = self.decode_latents(self.latents)
|
295 |
+
for i in range(len(decoded)):
|
296 |
+
T.ToPILImage()(decoded[i]).save(f'{self.config["output_path"]}/vae_recon/%05d.png' % i)
|
297 |
+
save_video(decoded, f'{self.config["output_path"]}/vae_recon_10.mp4', fps=10)
|
298 |
+
save_video(decoded, f'{self.config["output_path"]}/vae_recon_20.mp4', fps=20)
|
299 |
+
save_video(decoded, f'{self.config["output_path"]}/vae_recon_30.mp4', fps=30)
|
300 |
+
|
301 |
+
def edit_video(self):
|
302 |
+
save_files = self.inverted_latents is None # if we're in the original non-demo setting
|
303 |
+
if save_files:
|
304 |
+
os.makedirs(f'{self.config["output_path"]}/img_ode', exist_ok=True)
|
305 |
+
self.save_vae_recon()
|
306 |
+
# self.save_vae_recon()
|
307 |
+
pnp_f_t = int(self.config["n_timesteps"] * self.config["pnp_f_t"])
|
308 |
+
pnp_attn_t = int(self.config["n_timesteps"] * self.config["pnp_attn_t"])
|
309 |
+
|
310 |
+
self.init_method(conv_injection_t=pnp_f_t, qk_injection_t=pnp_attn_t)
|
311 |
+
|
312 |
+
noisy_latents = self.scheduler.add_noise(self.latents, self.eps, self.scheduler.timesteps[0])
|
313 |
+
edited_frames = self.sample_loop(noisy_latents, torch.arange(self.config["n_frames"]))
|
314 |
+
|
315 |
+
if save_files:
|
316 |
+
save_video(edited_frames, f'{self.config["output_path"]}/tokenflow_PnP_fps_10.mp4')
|
317 |
+
save_video(edited_frames, f'{self.config["output_path"]}/tokenflow_PnP_fps_20.mp4', fps=20)
|
318 |
+
save_video(edited_frames, f'{self.config["output_path"]}/tokenflow_PnP_fps_30.mp4', fps=30)
|
319 |
+
print('Done!')
|
320 |
+
else:
|
321 |
+
return edited_frames
|
322 |
+
|
323 |
+
def sample_loop(self, x, indices):
|
324 |
+
save_files = self.inverted_latents is None # if we're in the original non-demo setting
|
325 |
+
# save_files = True
|
326 |
+
if save_files:
|
327 |
+
os.makedirs(f'{self.config["output_path"]}/img_ode', exist_ok=True)
|
328 |
+
for i, t in enumerate(tqdm(self.scheduler.timesteps, desc="Sampling")):
|
329 |
+
x = self.batched_denoise_step(x, t, indices)
|
330 |
+
|
331 |
+
decoded_latents = self.decode_latents(x)
|
332 |
+
if save_files:
|
333 |
+
for i in range(len(decoded_latents)):
|
334 |
+
T.ToPILImage()(decoded_latents[i]).save(f'{self.config["output_path"]}/img_ode/%05d.png' % i)
|
335 |
+
|
336 |
+
return decoded_latents
|
337 |
+
|
338 |
+
|
339 |
+
# def run(config):
|
340 |
+
# seed_everything(config["seed"])
|
341 |
+
# print(config)
|
342 |
+
# editor = TokenFlow(config)
|
343 |
+
# editor.edit_video()
|
344 |
+
|
345 |
+
|
346 |
+
# if __name__ == '__main__':
|
347 |
+
# parser = argparse.ArgumentParser()
|
348 |
+
# parser.add_argument('--config_path', type=str, default='configs/config_pnp.yaml')
|
349 |
+
# opt = parser.parse_args()
|
350 |
+
# with open(opt.config_path, "r") as f:
|
351 |
+
# config = yaml.safe_load(f)
|
352 |
+
# config["output_path"] = os.path.join(config["output_path"] + f'_pnp_SD_{config["sd_version"]}',
|
353 |
+
# Path(config["data_path"]).stem,
|
354 |
+
# config["prompt"][:240],
|
355 |
+
# f'attn_{config["pnp_attn_t"]}_f_{config["pnp_f_t"]}',
|
356 |
+
# f'batch_size_{str(config["batch_size"])}',
|
357 |
+
# str(config["n_timesteps"]),
|
358 |
+
# )
|
359 |
+
# os.makedirs(config["output_path"], exist_ok=True)
|
360 |
+
# print(config["data_path"])
|
361 |
+
# assert os.path.exists(config["data_path"]), "Data path does not exist"
|
362 |
+
# with open(os.path.join(config["output_path"], "config.yaml"), "w") as f:
|
363 |
+
# yaml.dump(config, f)
|
364 |
+
# run(config)
|
tokenflow_utils.py
ADDED
@@ -0,0 +1,448 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import Type
|
2 |
+
import torch
|
3 |
+
import os
|
4 |
+
|
5 |
+
from utils import isinstance_str, batch_cosine_sim
|
6 |
+
|
7 |
+
def register_pivotal(diffusion_model, is_pivotal):
|
8 |
+
for _, module in diffusion_model.named_modules():
|
9 |
+
# If for some reason this has a different name, create an issue and I'll fix it
|
10 |
+
if isinstance_str(module, "BasicTransformerBlock"):
|
11 |
+
setattr(module, "pivotal_pass", is_pivotal)
|
12 |
+
|
13 |
+
def register_batch_idx(diffusion_model, batch_idx):
|
14 |
+
for _, module in diffusion_model.named_modules():
|
15 |
+
# If for some reason this has a different name, create an issue and I'll fix it
|
16 |
+
if isinstance_str(module, "BasicTransformerBlock"):
|
17 |
+
setattr(module, "batch_idx", batch_idx)
|
18 |
+
|
19 |
+
|
20 |
+
def register_time(model, t):
|
21 |
+
conv_module = model.unet.up_blocks[1].resnets[1]
|
22 |
+
setattr(conv_module, 't', t)
|
23 |
+
down_res_dict = {0: [0, 1], 1: [0, 1], 2: [0, 1]}
|
24 |
+
up_res_dict = {1: [0, 1, 2], 2: [0, 1, 2], 3: [0, 1, 2]}
|
25 |
+
for res in up_res_dict:
|
26 |
+
for block in up_res_dict[res]:
|
27 |
+
module = model.unet.up_blocks[res].attentions[block].transformer_blocks[0].attn1
|
28 |
+
setattr(module, 't', t)
|
29 |
+
module = model.unet.up_blocks[res].attentions[block].transformer_blocks[0].attn2
|
30 |
+
setattr(module, 't', t)
|
31 |
+
for res in down_res_dict:
|
32 |
+
for block in down_res_dict[res]:
|
33 |
+
module = model.unet.down_blocks[res].attentions[block].transformer_blocks[0].attn1
|
34 |
+
setattr(module, 't', t)
|
35 |
+
module = model.unet.down_blocks[res].attentions[block].transformer_blocks[0].attn2
|
36 |
+
setattr(module, 't', t)
|
37 |
+
module = model.unet.mid_block.attentions[0].transformer_blocks[0].attn1
|
38 |
+
setattr(module, 't', t)
|
39 |
+
module = model.unet.mid_block.attentions[0].transformer_blocks[0].attn2
|
40 |
+
setattr(module, 't', t)
|
41 |
+
|
42 |
+
|
43 |
+
def load_source_latents_t(t, latents_path):
|
44 |
+
latents_t_path = os.path.join(latents_path, f'noisy_latents_{t}.pt')
|
45 |
+
assert os.path.exists(latents_t_path), f'Missing latents at t {t} path {latents_t_path}'
|
46 |
+
latents = torch.load(latents_t_path)
|
47 |
+
return latents
|
48 |
+
|
49 |
+
def register_conv_injection(model, injection_schedule):
|
50 |
+
def conv_forward(self):
|
51 |
+
def forward(input_tensor, temb):
|
52 |
+
hidden_states = input_tensor
|
53 |
+
|
54 |
+
hidden_states = self.norm1(hidden_states)
|
55 |
+
hidden_states = self.nonlinearity(hidden_states)
|
56 |
+
|
57 |
+
if self.upsample is not None:
|
58 |
+
# upsample_nearest_nhwc fails with large batch sizes. see https://github.com/huggingface/diffusers/issues/984
|
59 |
+
if hidden_states.shape[0] >= 64:
|
60 |
+
input_tensor = input_tensor.contiguous()
|
61 |
+
hidden_states = hidden_states.contiguous()
|
62 |
+
input_tensor = self.upsample(input_tensor)
|
63 |
+
hidden_states = self.upsample(hidden_states)
|
64 |
+
elif self.downsample is not None:
|
65 |
+
input_tensor = self.downsample(input_tensor)
|
66 |
+
hidden_states = self.downsample(hidden_states)
|
67 |
+
|
68 |
+
hidden_states = self.conv1(hidden_states)
|
69 |
+
|
70 |
+
if temb is not None:
|
71 |
+
temb = self.time_emb_proj(self.nonlinearity(temb))[:, :, None, None]
|
72 |
+
|
73 |
+
if temb is not None and self.time_embedding_norm == "default":
|
74 |
+
hidden_states = hidden_states + temb
|
75 |
+
|
76 |
+
hidden_states = self.norm2(hidden_states)
|
77 |
+
|
78 |
+
if temb is not None and self.time_embedding_norm == "scale_shift":
|
79 |
+
scale, shift = torch.chunk(temb, 2, dim=1)
|
80 |
+
hidden_states = hidden_states * (1 + scale) + shift
|
81 |
+
|
82 |
+
hidden_states = self.nonlinearity(hidden_states)
|
83 |
+
|
84 |
+
hidden_states = self.dropout(hidden_states)
|
85 |
+
hidden_states = self.conv2(hidden_states)
|
86 |
+
if self.injection_schedule is not None and (self.t in self.injection_schedule or self.t == 1000):
|
87 |
+
source_batch_size = int(hidden_states.shape[0] // 3)
|
88 |
+
# inject unconditional
|
89 |
+
hidden_states[source_batch_size:2 * source_batch_size] = hidden_states[:source_batch_size]
|
90 |
+
# inject conditional
|
91 |
+
hidden_states[2 * source_batch_size:] = hidden_states[:source_batch_size]
|
92 |
+
|
93 |
+
if self.conv_shortcut is not None:
|
94 |
+
input_tensor = self.conv_shortcut(input_tensor)
|
95 |
+
|
96 |
+
output_tensor = (input_tensor + hidden_states) / self.output_scale_factor
|
97 |
+
|
98 |
+
return output_tensor
|
99 |
+
|
100 |
+
return forward
|
101 |
+
|
102 |
+
conv_module = model.unet.up_blocks[1].resnets[1]
|
103 |
+
conv_module.forward = conv_forward(conv_module)
|
104 |
+
setattr(conv_module, 'injection_schedule', injection_schedule)
|
105 |
+
|
106 |
+
def register_extended_attention_pnp(model, injection_schedule):
|
107 |
+
def sa_forward(self):
|
108 |
+
to_out = self.to_out
|
109 |
+
if type(to_out) is torch.nn.modules.container.ModuleList:
|
110 |
+
to_out = self.to_out[0]
|
111 |
+
else:
|
112 |
+
to_out = self.to_out
|
113 |
+
|
114 |
+
def forward(x, encoder_hidden_states=None):
|
115 |
+
batch_size, sequence_length, dim = x.shape
|
116 |
+
h = self.heads
|
117 |
+
n_frames = batch_size // 3
|
118 |
+
is_cross = encoder_hidden_states is not None
|
119 |
+
encoder_hidden_states = encoder_hidden_states if is_cross else x
|
120 |
+
q = self.to_q(x)
|
121 |
+
k = self.to_k(encoder_hidden_states)
|
122 |
+
v = self.to_v(encoder_hidden_states)
|
123 |
+
|
124 |
+
if self.injection_schedule is not None and (self.t in self.injection_schedule or self.t == 1000):
|
125 |
+
# inject unconditional
|
126 |
+
q[n_frames:2 * n_frames] = q[:n_frames]
|
127 |
+
k[n_frames:2 * n_frames] = k[:n_frames]
|
128 |
+
# inject conditional
|
129 |
+
q[2 * n_frames:] = q[:n_frames]
|
130 |
+
k[2 * n_frames:] = k[:n_frames]
|
131 |
+
|
132 |
+
k_source = k[:n_frames]
|
133 |
+
k_uncond = k[n_frames:2 * n_frames].reshape(1, n_frames * sequence_length, -1).repeat(n_frames, 1, 1)
|
134 |
+
k_cond = k[2 * n_frames:].reshape(1, n_frames * sequence_length, -1).repeat(n_frames, 1, 1)
|
135 |
+
|
136 |
+
v_source = v[:n_frames]
|
137 |
+
v_uncond = v[n_frames:2 * n_frames].reshape(1, n_frames * sequence_length, -1).repeat(n_frames, 1, 1)
|
138 |
+
v_cond = v[2 * n_frames:].reshape(1, n_frames * sequence_length, -1).repeat(n_frames, 1, 1)
|
139 |
+
|
140 |
+
q_source = self.head_to_batch_dim(q[:n_frames])
|
141 |
+
q_uncond = self.head_to_batch_dim(q[n_frames:2 * n_frames])
|
142 |
+
q_cond = self.head_to_batch_dim(q[2 * n_frames:])
|
143 |
+
k_source = self.head_to_batch_dim(k_source)
|
144 |
+
k_uncond = self.head_to_batch_dim(k_uncond)
|
145 |
+
k_cond = self.head_to_batch_dim(k_cond)
|
146 |
+
v_source = self.head_to_batch_dim(v_source)
|
147 |
+
v_uncond = self.head_to_batch_dim(v_uncond)
|
148 |
+
v_cond = self.head_to_batch_dim(v_cond)
|
149 |
+
|
150 |
+
|
151 |
+
q_src = q_source.view(n_frames, h, sequence_length, dim // h)
|
152 |
+
k_src = k_source.view(n_frames, h, sequence_length, dim // h)
|
153 |
+
v_src = v_source.view(n_frames, h, sequence_length, dim // h)
|
154 |
+
q_uncond = q_uncond.view(n_frames, h, sequence_length, dim // h)
|
155 |
+
k_uncond = k_uncond.view(n_frames, h, sequence_length * n_frames, dim // h)
|
156 |
+
v_uncond = v_uncond.view(n_frames, h, sequence_length * n_frames, dim // h)
|
157 |
+
q_cond = q_cond.view(n_frames, h, sequence_length, dim // h)
|
158 |
+
k_cond = k_cond.view(n_frames, h, sequence_length * n_frames, dim // h)
|
159 |
+
v_cond = v_cond.view(n_frames, h, sequence_length * n_frames, dim // h)
|
160 |
+
|
161 |
+
out_source_all = []
|
162 |
+
out_uncond_all = []
|
163 |
+
out_cond_all = []
|
164 |
+
|
165 |
+
single_batch = n_frames<=12
|
166 |
+
b = n_frames if single_batch else 1
|
167 |
+
|
168 |
+
for frame in range(0, n_frames, b):
|
169 |
+
out_source = []
|
170 |
+
out_uncond = []
|
171 |
+
out_cond = []
|
172 |
+
for j in range(h):
|
173 |
+
sim_source_b = torch.bmm(q_src[frame: frame+ b, j], k_src[frame: frame+ b, j].transpose(-1, -2)) * self.scale
|
174 |
+
sim_uncond_b = torch.bmm(q_uncond[frame: frame+ b, j], k_uncond[frame: frame+ b, j].transpose(-1, -2)) * self.scale
|
175 |
+
sim_cond = torch.bmm(q_cond[frame: frame+ b, j], k_cond[frame: frame+ b, j].transpose(-1, -2)) * self.scale
|
176 |
+
|
177 |
+
out_source.append(torch.bmm(sim_source_b.softmax(dim=-1), v_src[frame: frame+ b, j]))
|
178 |
+
out_uncond.append(torch.bmm(sim_uncond_b.softmax(dim=-1), v_uncond[frame: frame+ b, j]))
|
179 |
+
out_cond.append(torch.bmm(sim_cond.softmax(dim=-1), v_cond[frame: frame+ b, j]))
|
180 |
+
|
181 |
+
out_source = torch.cat(out_source, dim=0)
|
182 |
+
out_uncond = torch.cat(out_uncond, dim=0)
|
183 |
+
out_cond = torch.cat(out_cond, dim=0)
|
184 |
+
if single_batch:
|
185 |
+
out_source = out_source.view(h, n_frames,sequence_length, dim // h).permute(1, 0, 2, 3).reshape(h * n_frames, sequence_length, -1)
|
186 |
+
out_uncond = out_uncond.view(h, n_frames,sequence_length, dim // h).permute(1, 0, 2, 3).reshape(h * n_frames, sequence_length, -1)
|
187 |
+
out_cond = out_cond.view(h, n_frames,sequence_length, dim // h).permute(1, 0, 2, 3).reshape(h * n_frames, sequence_length, -1)
|
188 |
+
out_source_all.append(out_source)
|
189 |
+
out_uncond_all.append(out_uncond)
|
190 |
+
out_cond_all.append(out_cond)
|
191 |
+
|
192 |
+
out_source = torch.cat(out_source_all, dim=0)
|
193 |
+
out_uncond = torch.cat(out_uncond_all, dim=0)
|
194 |
+
out_cond = torch.cat(out_cond_all, dim=0)
|
195 |
+
|
196 |
+
out = torch.cat([out_source, out_uncond, out_cond], dim=0)
|
197 |
+
out = self.batch_to_head_dim(out)
|
198 |
+
|
199 |
+
return to_out(out)
|
200 |
+
|
201 |
+
return forward
|
202 |
+
|
203 |
+
for _, module in model.unet.named_modules():
|
204 |
+
if isinstance_str(module, "BasicTransformerBlock"):
|
205 |
+
module.attn1.forward = sa_forward(module.attn1)
|
206 |
+
setattr(module.attn1, 'injection_schedule', [])
|
207 |
+
|
208 |
+
res_dict = {1: [1, 2], 2: [0, 1, 2], 3: [0, 1, 2]}
|
209 |
+
# we are injecting attention in blocks 4 - 11 of the decoder, so not in the first block of the lowest resolution
|
210 |
+
for res in res_dict:
|
211 |
+
for block in res_dict[res]:
|
212 |
+
module = model.unet.up_blocks[res].attentions[block].transformer_blocks[0].attn1
|
213 |
+
module.forward = sa_forward(module)
|
214 |
+
setattr(module, 'injection_schedule', injection_schedule)
|
215 |
+
|
216 |
+
def register_extended_attention(model):
|
217 |
+
def sa_forward(self):
|
218 |
+
to_out = self.to_out
|
219 |
+
if type(to_out) is torch.nn.modules.container.ModuleList:
|
220 |
+
to_out = self.to_out[0]
|
221 |
+
else:
|
222 |
+
to_out = self.to_out
|
223 |
+
|
224 |
+
def forward(x, encoder_hidden_states=None):
|
225 |
+
batch_size, sequence_length, dim = x.shape
|
226 |
+
h = self.heads
|
227 |
+
n_frames = batch_size // 3
|
228 |
+
is_cross = encoder_hidden_states is not None
|
229 |
+
encoder_hidden_states = encoder_hidden_states if is_cross else x
|
230 |
+
q = self.to_q(x)
|
231 |
+
k = self.to_k(encoder_hidden_states)
|
232 |
+
v = self.to_v(encoder_hidden_states)
|
233 |
+
|
234 |
+
k_source = k[:n_frames]
|
235 |
+
k_uncond = k[n_frames: 2*n_frames].reshape(1, n_frames * sequence_length, -1).repeat(n_frames, 1, 1)
|
236 |
+
k_cond = k[2*n_frames:].reshape(1, n_frames * sequence_length, -1).repeat(n_frames, 1, 1)
|
237 |
+
v_source = v[:n_frames]
|
238 |
+
v_uncond = v[n_frames:2*n_frames].reshape(1, n_frames * sequence_length, -1).repeat(n_frames, 1, 1)
|
239 |
+
v_cond = v[2*n_frames:].reshape(1, n_frames * sequence_length, -1).repeat(n_frames, 1, 1)
|
240 |
+
|
241 |
+
q_source = self.head_to_batch_dim(q[:n_frames])
|
242 |
+
q_uncond = self.head_to_batch_dim(q[n_frames: 2*n_frames])
|
243 |
+
q_cond = self.head_to_batch_dim(q[2 * n_frames:])
|
244 |
+
k_source = self.head_to_batch_dim(k_source)
|
245 |
+
k_uncond = self.head_to_batch_dim(k_uncond)
|
246 |
+
k_cond = self.head_to_batch_dim(k_cond)
|
247 |
+
v_source = self.head_to_batch_dim(v_source)
|
248 |
+
v_uncond = self.head_to_batch_dim(v_uncond)
|
249 |
+
v_cond = self.head_to_batch_dim(v_cond)
|
250 |
+
|
251 |
+
out_source = []
|
252 |
+
out_uncond = []
|
253 |
+
out_cond = []
|
254 |
+
|
255 |
+
q_src = q_source.view(n_frames, h, sequence_length, dim // h)
|
256 |
+
k_src = k_source.view(n_frames, h, sequence_length, dim // h)
|
257 |
+
v_src = v_source.view(n_frames, h, sequence_length, dim // h)
|
258 |
+
q_uncond = q_uncond.view(n_frames, h, sequence_length, dim // h)
|
259 |
+
k_uncond = k_uncond.view(n_frames, h, sequence_length * n_frames, dim // h)
|
260 |
+
v_uncond = v_uncond.view(n_frames, h, sequence_length * n_frames, dim // h)
|
261 |
+
q_cond = q_cond.view(n_frames, h, sequence_length, dim // h)
|
262 |
+
k_cond = k_cond.view(n_frames, h, sequence_length * n_frames, dim // h)
|
263 |
+
v_cond = v_cond.view(n_frames, h, sequence_length * n_frames, dim // h)
|
264 |
+
|
265 |
+
for j in range(h):
|
266 |
+
sim_source_b = torch.bmm(q_src[:, j], k_src[:, j].transpose(-1, -2)) * self.scale
|
267 |
+
sim_uncond_b = torch.bmm(q_uncond[:, j], k_uncond[:, j].transpose(-1, -2)) * self.scale
|
268 |
+
sim_cond = torch.bmm(q_cond[:, j], k_cond[:, j].transpose(-1, -2)) * self.scale
|
269 |
+
|
270 |
+
out_source.append(torch.bmm(sim_source_b.softmax(dim=-1), v_src[:, j]))
|
271 |
+
out_uncond.append(torch.bmm(sim_uncond_b.softmax(dim=-1), v_uncond[:, j]))
|
272 |
+
out_cond.append(torch.bmm(sim_cond.softmax(dim=-1), v_cond[:, j]))
|
273 |
+
|
274 |
+
out_source = torch.cat(out_source, dim=0).view(h, n_frames,sequence_length, dim // h).permute(1, 0, 2, 3).reshape(h * n_frames, sequence_length, -1)
|
275 |
+
out_uncond = torch.cat(out_uncond, dim=0).view(h, n_frames,sequence_length, dim // h).permute(1, 0, 2, 3).reshape(h * n_frames, sequence_length, -1)
|
276 |
+
out_cond = torch.cat(out_cond, dim=0).view(h, n_frames,sequence_length, dim // h).permute(1, 0, 2, 3).reshape(h * n_frames, sequence_length, -1)
|
277 |
+
|
278 |
+
out = torch.cat([out_source, out_uncond, out_cond], dim=0)
|
279 |
+
out = self.batch_to_head_dim(out)
|
280 |
+
|
281 |
+
return to_out(out)
|
282 |
+
|
283 |
+
return forward
|
284 |
+
|
285 |
+
for _, module in model.unet.named_modules():
|
286 |
+
if isinstance_str(module, "BasicTransformerBlock"):
|
287 |
+
module.attn1.forward = sa_forward(module.attn1)
|
288 |
+
|
289 |
+
res_dict = {1: [1, 2], 2: [0, 1, 2], 3: [0, 1, 2]}
|
290 |
+
# we are injecting attention in blocks 4 - 11 of the decoder, so not in the first block of the lowest resolution
|
291 |
+
for res in res_dict:
|
292 |
+
for block in res_dict[res]:
|
293 |
+
module = model.unet.up_blocks[res].attentions[block].transformer_blocks[0].attn1
|
294 |
+
module.forward = sa_forward(module)
|
295 |
+
|
296 |
+
def make_tokenflow_attention_block(block_class: Type[torch.nn.Module]) -> Type[torch.nn.Module]:
|
297 |
+
|
298 |
+
class TokenFlowBlock(block_class):
|
299 |
+
|
300 |
+
def forward(
|
301 |
+
self,
|
302 |
+
hidden_states,
|
303 |
+
attention_mask=None,
|
304 |
+
encoder_hidden_states=None,
|
305 |
+
encoder_attention_mask=None,
|
306 |
+
timestep=None,
|
307 |
+
cross_attention_kwargs=None,
|
308 |
+
class_labels=None,
|
309 |
+
) -> torch.Tensor:
|
310 |
+
|
311 |
+
batch_size, sequence_length, dim = hidden_states.shape
|
312 |
+
n_frames = batch_size // 3
|
313 |
+
mid_idx = n_frames // 2
|
314 |
+
hidden_states = hidden_states.view(3, n_frames, sequence_length, dim)
|
315 |
+
|
316 |
+
if self.use_ada_layer_norm:
|
317 |
+
norm_hidden_states = self.norm1(hidden_states, timestep)
|
318 |
+
elif self.use_ada_layer_norm_zero:
|
319 |
+
norm_hidden_states, gate_msa, shift_mlp, scale_mlp, gate_mlp = self.norm1(
|
320 |
+
hidden_states, timestep, class_labels, hidden_dtype=hidden_states.dtype
|
321 |
+
)
|
322 |
+
else:
|
323 |
+
norm_hidden_states = self.norm1(hidden_states)
|
324 |
+
|
325 |
+
norm_hidden_states = norm_hidden_states.view(3, n_frames, sequence_length, dim)
|
326 |
+
if self.pivotal_pass:
|
327 |
+
self.pivot_hidden_states = norm_hidden_states
|
328 |
+
else:
|
329 |
+
idx1 = []
|
330 |
+
idx2 = []
|
331 |
+
batch_idxs = [self.batch_idx]
|
332 |
+
if self.batch_idx > 0:
|
333 |
+
batch_idxs.append(self.batch_idx - 1)
|
334 |
+
|
335 |
+
sim = batch_cosine_sim(norm_hidden_states[0].reshape(-1, dim),
|
336 |
+
self.pivot_hidden_states[0][batch_idxs].reshape(-1, dim))
|
337 |
+
if len(batch_idxs) == 2:
|
338 |
+
sim1, sim2 = sim.chunk(2, dim=1)
|
339 |
+
# sim: n_frames * seq_len, len(batch_idxs) * seq_len
|
340 |
+
idx1.append(sim1.argmax(dim=-1)) # n_frames * seq_len
|
341 |
+
idx2.append(sim2.argmax(dim=-1)) # n_frames * seq_len
|
342 |
+
else:
|
343 |
+
idx1.append(sim.argmax(dim=-1))
|
344 |
+
idx1 = torch.stack(idx1 * 3, dim=0) # 3, n_frames * seq_len
|
345 |
+
idx1 = idx1.squeeze(1)
|
346 |
+
if len(batch_idxs) == 2:
|
347 |
+
idx2 = torch.stack(idx2 * 3, dim=0) # 3, n_frames * seq_len
|
348 |
+
idx2 = idx2.squeeze(1)
|
349 |
+
|
350 |
+
# 1. Self-Attention
|
351 |
+
cross_attention_kwargs = cross_attention_kwargs if cross_attention_kwargs is not None else {}
|
352 |
+
if self.pivotal_pass:
|
353 |
+
# norm_hidden_states.shape = 3, n_frames * seq_len, dim
|
354 |
+
self.attn_output = self.attn1(
|
355 |
+
norm_hidden_states.view(batch_size, sequence_length, dim),
|
356 |
+
encoder_hidden_states=encoder_hidden_states if self.only_cross_attention else None,
|
357 |
+
**cross_attention_kwargs,
|
358 |
+
)
|
359 |
+
# 3, n_frames * seq_len, dim - > 3 * n_frames, seq_len, dim
|
360 |
+
self.kf_attn_output = self.attn_output
|
361 |
+
else:
|
362 |
+
batch_kf_size, _, _ = self.kf_attn_output.shape
|
363 |
+
self.attn_output = self.kf_attn_output.view(3, batch_kf_size // 3, sequence_length, dim)[:,
|
364 |
+
batch_idxs] # 3, n_frames, seq_len, dim --> 3, len(batch_idxs), seq_len, dim
|
365 |
+
if self.use_ada_layer_norm_zero:
|
366 |
+
self.attn_output = gate_msa.unsqueeze(1) * self.attn_output
|
367 |
+
|
368 |
+
# gather values from attn_output, using idx as indices, and get a tensor of shape 3, n_frames, seq_len, dim
|
369 |
+
if not self.pivotal_pass:
|
370 |
+
if len(batch_idxs) == 2:
|
371 |
+
attn_1, attn_2 = self.attn_output[:, 0], self.attn_output[:, 1]
|
372 |
+
attn_output1 = attn_1.gather(dim=1, index=idx1.unsqueeze(-1).repeat(1, 1, dim))
|
373 |
+
attn_output2 = attn_2.gather(dim=1, index=idx2.unsqueeze(-1).repeat(1, 1, dim))
|
374 |
+
|
375 |
+
s = torch.arange(0, n_frames).to(idx1.device) + batch_idxs[0] * n_frames
|
376 |
+
# distance from the pivot
|
377 |
+
p1 = batch_idxs[0] * n_frames + n_frames // 2
|
378 |
+
p2 = batch_idxs[1] * n_frames + n_frames // 2
|
379 |
+
d1 = torch.abs(s - p1)
|
380 |
+
d2 = torch.abs(s - p2)
|
381 |
+
# weight
|
382 |
+
w1 = d2 / (d1 + d2)
|
383 |
+
w1 = torch.sigmoid(w1)
|
384 |
+
|
385 |
+
w1 = w1.unsqueeze(0).unsqueeze(-1).unsqueeze(-1).repeat(3, 1, sequence_length, dim)
|
386 |
+
attn_output1 = attn_output1.view(3, n_frames, sequence_length, dim)
|
387 |
+
attn_output2 = attn_output2.view(3, n_frames, sequence_length, dim)
|
388 |
+
attn_output = w1 * attn_output1 + (1 - w1) * attn_output2
|
389 |
+
else:
|
390 |
+
attn_output = self.attn_output[:,0].gather(dim=1, index=idx1.unsqueeze(-1).repeat(1, 1, dim))
|
391 |
+
|
392 |
+
attn_output = attn_output.reshape(
|
393 |
+
batch_size, sequence_length, dim) # 3 * n_frames, seq_len, dim
|
394 |
+
else:
|
395 |
+
attn_output = self.attn_output
|
396 |
+
hidden_states = hidden_states.reshape(batch_size, sequence_length, dim) # 3 * n_frames, seq_len, dim
|
397 |
+
hidden_states = attn_output + hidden_states
|
398 |
+
|
399 |
+
if self.attn2 is not None:
|
400 |
+
norm_hidden_states = (
|
401 |
+
self.norm2(hidden_states, timestep) if self.use_ada_layer_norm else self.norm2(hidden_states)
|
402 |
+
)
|
403 |
+
|
404 |
+
# 2. Cross-Attention
|
405 |
+
attn_output = self.attn2(
|
406 |
+
norm_hidden_states,
|
407 |
+
encoder_hidden_states=encoder_hidden_states,
|
408 |
+
attention_mask=encoder_attention_mask,
|
409 |
+
**cross_attention_kwargs,
|
410 |
+
)
|
411 |
+
hidden_states = attn_output + hidden_states
|
412 |
+
|
413 |
+
# 3. Feed-forward
|
414 |
+
norm_hidden_states = self.norm3(hidden_states)
|
415 |
+
|
416 |
+
if self.use_ada_layer_norm_zero:
|
417 |
+
norm_hidden_states = norm_hidden_states * (1 + scale_mlp[:, None]) + shift_mlp[:, None]
|
418 |
+
|
419 |
+
|
420 |
+
ff_output = self.ff(norm_hidden_states)
|
421 |
+
|
422 |
+
if self.use_ada_layer_norm_zero:
|
423 |
+
ff_output = gate_mlp.unsqueeze(1) * ff_output
|
424 |
+
|
425 |
+
hidden_states = ff_output + hidden_states
|
426 |
+
|
427 |
+
return hidden_states
|
428 |
+
|
429 |
+
return TokenFlowBlock
|
430 |
+
|
431 |
+
|
432 |
+
def set_tokenflow(
|
433 |
+
model: torch.nn.Module):
|
434 |
+
"""
|
435 |
+
Sets the tokenflow attention blocks in a model.
|
436 |
+
"""
|
437 |
+
|
438 |
+
for _, module in model.named_modules():
|
439 |
+
if isinstance_str(module, "BasicTransformerBlock"):
|
440 |
+
make_tokenflow_block_fn = make_tokenflow_attention_block
|
441 |
+
module.__class__ = make_tokenflow_block_fn(module.__class__)
|
442 |
+
|
443 |
+
# Something needed for older versions of diffusers
|
444 |
+
if not hasattr(module, "use_ada_layer_norm_zero"):
|
445 |
+
module.use_ada_layer_norm = False
|
446 |
+
module.use_ada_layer_norm_zero = False
|
447 |
+
|
448 |
+
return model
|
utils.py
ADDED
@@ -0,0 +1,121 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from pathlib import Path
|
2 |
+
from PIL import Image
|
3 |
+
import torch
|
4 |
+
import yaml
|
5 |
+
import math
|
6 |
+
|
7 |
+
import torchvision.transforms as T
|
8 |
+
from torchvision.io import read_video,write_video
|
9 |
+
import os
|
10 |
+
import random
|
11 |
+
import numpy as np
|
12 |
+
from torchvision.io import write_video
|
13 |
+
# from kornia.filters import joint_bilateral_blur
|
14 |
+
from kornia.geometry.transform import remap
|
15 |
+
from kornia.utils.grid import create_meshgrid
|
16 |
+
import cv2
|
17 |
+
|
18 |
+
def save_video_frames(video_path, img_size=(512,512)):
|
19 |
+
video, _, _ = read_video(video_path, output_format="TCHW")
|
20 |
+
# rotate video -90 degree if video is .mov format. this is a weird bug in torchvision
|
21 |
+
if video_path.endswith('.mov'):
|
22 |
+
video = T.functional.rotate(video, -90)
|
23 |
+
video_name = Path(video_path).stem
|
24 |
+
os.makedirs(f'data/{video_name}', exist_ok=True)
|
25 |
+
for i in range(len(video)):
|
26 |
+
ind = str(i).zfill(5)
|
27 |
+
image = T.ToPILImage()(video[i])
|
28 |
+
image_resized = image.resize((img_size), resample=Image.Resampling.LANCZOS)
|
29 |
+
image_resized.save(f'data/{video_name}/{ind}.png')
|
30 |
+
|
31 |
+
def video_to_frames(video_path, img_size=(512,512)):
|
32 |
+
video, _, _ = read_video(video_path, output_format="TCHW")
|
33 |
+
# rotate video -90 degree if video is .mov format. this is a weird bug in torchvision
|
34 |
+
if video_path.endswith('.mov'):
|
35 |
+
video = T.functional.rotate(video, -90)
|
36 |
+
video_name = Path(video_path).stem
|
37 |
+
# os.makedirs(f'data/{video_name}', exist_ok=True)
|
38 |
+
frames = []
|
39 |
+
for i in range(len(video)):
|
40 |
+
ind = str(i).zfill(5)
|
41 |
+
image = T.ToPILImage()(video[i])
|
42 |
+
image_resized = image.resize((img_size), resample=Image.Resampling.LANCZOS)
|
43 |
+
# image_resized.save(f'data/{video_name}/{ind}.png')
|
44 |
+
frames.append(image_resized)
|
45 |
+
return frames
|
46 |
+
|
47 |
+
def add_dict_to_yaml_file(file_path, key, value):
|
48 |
+
data = {}
|
49 |
+
|
50 |
+
# If the file already exists, load its contents into the data dictionary
|
51 |
+
if os.path.exists(file_path):
|
52 |
+
with open(file_path, 'r') as file:
|
53 |
+
data = yaml.safe_load(file)
|
54 |
+
|
55 |
+
# Add or update the key-value pair
|
56 |
+
data[key] = value
|
57 |
+
|
58 |
+
# Save the data back to the YAML file
|
59 |
+
with open(file_path, 'w') as file:
|
60 |
+
yaml.dump(data, file)
|
61 |
+
|
62 |
+
def isinstance_str(x: object, cls_name: str):
|
63 |
+
"""
|
64 |
+
Checks whether x has any class *named* cls_name in its ancestry.
|
65 |
+
Doesn't require access to the class's implementation.
|
66 |
+
|
67 |
+
Useful for patching!
|
68 |
+
"""
|
69 |
+
|
70 |
+
for _cls in x.__class__.__mro__:
|
71 |
+
if _cls.__name__ == cls_name:
|
72 |
+
return True
|
73 |
+
|
74 |
+
return False
|
75 |
+
|
76 |
+
|
77 |
+
def batch_cosine_sim(x, y):
|
78 |
+
if type(x) is list:
|
79 |
+
x = torch.cat(x, dim=0)
|
80 |
+
if type(y) is list:
|
81 |
+
y = torch.cat(y, dim=0)
|
82 |
+
x = x / x.norm(dim=-1, keepdim=True)
|
83 |
+
y = y / y.norm(dim=-1, keepdim=True)
|
84 |
+
similarity = x @ y.T
|
85 |
+
return similarity
|
86 |
+
|
87 |
+
|
88 |
+
def load_imgs(data_path, n_frames, device='cuda', pil=False):
|
89 |
+
imgs = []
|
90 |
+
pils = []
|
91 |
+
for i in range(n_frames):
|
92 |
+
img_path = os.path.join(data_path, "%05d.jpg" % i)
|
93 |
+
if not os.path.exists(img_path):
|
94 |
+
img_path = os.path.join(data_path, "%05d.png" % i)
|
95 |
+
img_pil = Image.open(img_path)
|
96 |
+
pils.append(img_pil)
|
97 |
+
img = T.ToTensor()(img_pil).unsqueeze(0)
|
98 |
+
imgs.append(img)
|
99 |
+
if pil:
|
100 |
+
return torch.cat(imgs).to(device), pils
|
101 |
+
return torch.cat(imgs).to(device)
|
102 |
+
|
103 |
+
|
104 |
+
def save_video(raw_frames, save_path, fps=10):
|
105 |
+
video_codec = "libx264"
|
106 |
+
video_options = {
|
107 |
+
"crf": "18", # Constant Rate Factor (lower value = higher quality, 18 is a good balance)
|
108 |
+
"preset": "slow", # Encoding preset (e.g., ultrafast, superfast, veryfast, faster, fast, medium, slow, slower, veryslow)
|
109 |
+
}
|
110 |
+
|
111 |
+
frames = (raw_frames * 255).to(torch.uint8).cpu().permute(0, 2, 3, 1)
|
112 |
+
write_video(save_path, frames, fps=fps, video_codec=video_codec, options=video_options)
|
113 |
+
|
114 |
+
|
115 |
+
def seed_everything(seed):
|
116 |
+
torch.manual_seed(seed)
|
117 |
+
torch.cuda.manual_seed(seed)
|
118 |
+
random.seed(seed)
|
119 |
+
np.random.seed(seed)
|
120 |
+
|
121 |
+
|