Spaces:
Running
on
Zero
Running
on
Zero
File size: 5,415 Bytes
0c57d8c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 |
import time
import os
import torch
from typing import Callable
from dartrs.v2 import (
V2Model,
MixtralModel,
MistralModel,
compose_prompt,
LengthTag,
AspectRatioTag,
RatingTag,
IdentityTag,
)
from dartrs.dartrs import DartTokenizer
from dartrs.utils import get_generation_config
import gradio as gr
from gradio.components import Component
from output import UpsamplingOutput
HF_TOKEN = os.getenv("HF_TOKEN", None)
V2_ALL_MODELS = {
"dart-v2-moe-sft": {
"repo": "p1atdev/dart-v2-moe-sft",
"type": "sft",
"class": MixtralModel,
},
"dart-v2-sft": {
"repo": "p1atdev/dart-v2-sft",
"type": "sft",
"class": MistralModel,
},
}
def prepare_models(model_config: dict):
model_name = model_config["repo"]
tokenizer = DartTokenizer.from_pretrained(model_name, auth_token=HF_TOKEN)
model = model_config["class"].from_pretrained(model_name, auth_token=HF_TOKEN)
return {
"tokenizer": tokenizer,
"model": model,
}
def normalize_tags(tokenizer: DartTokenizer, tags: str):
"""Just remove unk tokens."""
return ", ".join([tag for tag in tokenizer.tokenize(tags) if tag != "<|unk|>"])
@torch.no_grad()
def generate_tags(
model: V2Model,
tokenizer: DartTokenizer,
prompt: str,
ban_token_ids: list[int],
):
output = model.generate(
get_generation_config(
prompt,
tokenizer=tokenizer,
temperature=1,
top_p=0.9,
top_k=100,
max_new_tokens=256,
ban_token_ids=ban_token_ids,
),
)
return output
def _people_tag(noun: str, minimum: int = 1, maximum: int = 5):
return (
[f"1{noun}"]
+ [f"{num}{noun}s" for num in range(minimum + 1, maximum + 1)]
+ [f"{maximum+1}+{noun}s"]
)
PEOPLE_TAGS = (
_people_tag("girl") + _people_tag("boy") + _people_tag("other") + ["no humans"]
)
def gen_prompt_text(output: UpsamplingOutput):
# separate people tags (e.g. 1girl)
people_tags = []
other_general_tags = []
for tag in output.general_tags.split(","):
tag = tag.strip()
if tag in PEOPLE_TAGS:
people_tags.append(tag)
else:
other_general_tags.append(tag)
return ", ".join(
[
part.strip()
for part in [
*people_tags,
output.character_tags,
output.copyright_tags,
*other_general_tags,
output.upsampled_tags,
output.rating_tag,
]
if part.strip() != ""
]
)
def elapsed_time_format(elapsed_time: float) -> str:
return f"Elapsed: {elapsed_time:.2f} seconds"
def parse_upsampling_output(
upsampler: Callable[..., UpsamplingOutput],
):
def _parse_upsampling_output(*args) -> tuple[str, str, dict]:
output = upsampler(*args)
return (
gen_prompt_text(output),
elapsed_time_format(output.elapsed_time),
gr.update(interactive=True),
gr.update(interactive=True),
)
return _parse_upsampling_output
class V2UI:
model_name: str | None = None
model: V2Model
tokenizer: DartTokenizer
input_components: list[Component] = []
generate_btn: gr.Button
def on_generate(
self,
model_name: str,
copyright_tags: str,
character_tags: str,
general_tags: str,
rating_tag: RatingTag,
aspect_ratio_tag: AspectRatioTag,
length_tag: LengthTag,
identity_tag: IdentityTag,
ban_tags: str,
*args,
) -> UpsamplingOutput:
if self.model_name is None or self.model_name != model_name:
models = prepare_models(V2_ALL_MODELS[model_name])
self.model = models["model"]
self.tokenizer = models["tokenizer"]
self.model_name = model_name
# normalize tags
# copyright_tags = normalize_tags(self.tokenizer, copyright_tags)
# character_tags = normalize_tags(self.tokenizer, character_tags)
# general_tags = normalize_tags(self.tokenizer, general_tags)
ban_token_ids = self.tokenizer.encode(ban_tags.strip())
prompt = compose_prompt(
prompt=general_tags,
copyright=copyright_tags,
character=character_tags,
rating=rating_tag,
aspect_ratio=aspect_ratio_tag,
length=length_tag,
identity=identity_tag,
)
start = time.time()
upsampled_tags = generate_tags(
self.model,
self.tokenizer,
prompt,
ban_token_ids,
)
elapsed_time = time.time() - start
return UpsamplingOutput(
upsampled_tags=upsampled_tags,
copyright_tags=copyright_tags,
character_tags=character_tags,
general_tags=general_tags,
rating_tag=rating_tag,
aspect_ratio_tag=aspect_ratio_tag,
length_tag=length_tag,
identity_tag=identity_tag,
elapsed_time=elapsed_time,
)
|