Spaces:
Running
on
Zero
Running
on
Zero
File size: 38,729 Bytes
0c57d8c 98f6657 1dcfd98 c23ec23 1dcfd98 0c57d8c ed51a72 0c57d8c 98f6657 ed6cc2f 0c57d8c 98f6657 0c57d8c c23ec23 0c57d8c 98f6657 ed6cc2f 0c57d8c 98f6657 0c57d8c 98f6657 0c57d8c 98f6657 0c57d8c 98f6657 0c57d8c 98f6657 0c57d8c 98f6657 0c57d8c 98f6657 0c57d8c ed6cc2f 0c57d8c c23ec23 0c57d8c 98f6657 0c57d8c ed51a72 0c57d8c 98f6657 0c57d8c 98f6657 0c57d8c 98f6657 0c57d8c ed6cc2f 0c57d8c ed6cc2f 0c57d8c c23ec23 ed6cc2f 0c57d8c c23ec23 0c57d8c c23ec23 0c57d8c 98f6657 0c57d8c ed6cc2f 0c57d8c ed6cc2f 0c57d8c c23ec23 0c57d8c 98f6657 0c57d8c ed51a72 98f6657 ed51a72 ed6cc2f 98f6657 ed51a72 c23ec23 ed51a72 98f6657 ed51a72 c23ec23 ed51a72 c23ec23 ed51a72 0c57d8c 98f6657 0c57d8c 98f6657 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 |
import os
import json
import gradio as gr
from PIL import Image
from huggingface_hub import HfApi
from requests import HTTPError, Timeout
HF_LORA_PRIVATE_REPOS1 = ['John6666/loratest1', 'John6666/loratest3', 'John6666/loratest4', 'John6666/loratest6']
HF_LORA_PRIVATE_REPOS2 = ['John6666/loratest10', 'John6666/loratest']
HF_LORA_PRIVATE_REPOS = HF_LORA_PRIVATE_REPOS1 + HF_LORA_PRIVATE_REPOS2
HF_LORA_ESSENTIAL_PRIVATE_REPO = 'John6666/loratest1'
directory_loras = 'loras'
CIVITAI_API_KEY = os.environ.get("CIVITAI_API_KEY")
def get_user_agent():
return 'Mozilla/5.0 (Windows NT 10.0; Win64; x64; rv:127.0) Gecko/20100101 Firefox/127.0'
def change_interface_mode(mode: str):
if mode == "Fast":
return gr.update(open=False), gr.update(visible=True), gr.update(open=False), gr.update(open=False),\
gr.update(visible=True), gr.update(open=False), gr.update(visible=True), gr.update(visible=True),\
gr.update(visible=True), gr.update(visible=True), gr.update(visible=True), gr.update(visible=True),\
gr.update(visible=True), gr.update(visible=True), gr.update(value="Fast")
elif mode == "Simple": # t2i mode
return gr.update(open=True), gr.update(visible=True), gr.update(open=True), gr.update(open=True),\
gr.update(visible=True), gr.update(open=False), gr.update(visible=False), gr.update(visible=False),\
gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), gr.update(visible=False),\
gr.update(visible=False), gr.update(visible=False), gr.update(value="Standard")
elif mode == "LoRA": # t2i LoRA mode
return gr.update(open=True), gr.update(visible=True), gr.update(open=True), gr.update(open=False),\
gr.update(visible=True), gr.update(open=True), gr.update(visible=True), gr.update(visible=True),\
gr.update(visible=True), gr.update(visible=True), gr.update(visible=True), gr.update(visible=True),\
gr.update(visible=True), gr.update(visible=False), gr.update(value="Standard")
else: # Standard
return gr.update(open=False), gr.update(visible=True), gr.update(open=False), gr.update(open=False),\
gr.update(visible=True), gr.update(open=False), gr.update(visible=True), gr.update(visible=True),\
gr.update(visible=True), gr.update(visible=True), gr.update(visible=True), gr.update(visible=True),\
gr.update(visible=True), gr.update(visible=True), gr.update(value="Standard")
def get_model_list(directory_path):
model_list = []
valid_extensions = {'.ckpt', '.pt', '.pth', '.safetensors', '.bin'}
for filename in os.listdir(directory_path):
if os.path.splitext(filename)[1] in valid_extensions:
name_without_extension = os.path.splitext(filename)[0]
file_path = os.path.join(directory_path, filename)
# model_list.append((name_without_extension, file_path))
model_list.append(file_path)
# print('\033[34mFILE: ' + file_path + '\033[0m')
return model_list
def list_uniq(l):
return sorted(set(l), key=l.index)
def list_sub(a, b):
return [e for e in a if e not in b]
def normalize_prompt_list(tags):
prompts = []
for tag in tags:
tag = str(tag).strip()
if tag:
prompts.append(tag)
return prompts
def escape_lora_basename(basename: str):
return basename.replace(".", "_").replace(" ", "_").replace(",", "")
def download_private_repo(repo_id, dir_path, is_replace):
from huggingface_hub import snapshot_download
hf_read_token = os.environ.get('HF_READ_TOKEN')
if not hf_read_token: return
try:
snapshot_download(repo_id=repo_id, local_dir=dir_path, allow_patterns=['*.ckpt', '*.pt', '*.pth', '*.safetensors', '*.bin'], use_auth_token=hf_read_token)
except (EnvironmentError, OSError, ValueError, HTTPError, Timeout) as e:
return
else:
if is_replace:
from pathlib import Path
for file in Path(dir_path).glob("*"):
if file.exists() and "." in file.stem or " " in file.stem and file.suffix in ['.ckpt', '.pt', '.pth', '.safetensors', '.bin']:
newpath = Path(f'{file.parent.name}/{escape_lora_basename(file.stem)}{file.suffix}')
file.resolve().rename(newpath.resolve())
private_model_path_repo_dict = {}
def get_private_model_list(repo_id, dir_path):
global private_model_path_repo_dict
api = HfApi()
hf_read_token = os.environ.get('HF_READ_TOKEN')
if not hf_read_token: return []
try:
files = api.list_repo_files(repo_id, token=hf_read_token)
except (EnvironmentError, OSError, ValueError, HTTPError, Timeout) as e:
return []
else:
model_list = []
for file in files:
from pathlib import Path
path = Path(f"{dir_path}/{file}")
if path.suffix in ['.ckpt', '.pt', '.pth', '.safetensors', '.bin']:
model_list.append(str(path))
for model in model_list:
private_model_path_repo_dict[model] = repo_id
return model_list
def get_private_lora_model_lists():
models1 = []
models2 = []
for repo in HF_LORA_PRIVATE_REPOS1:
models1.extend(get_private_model_list(repo, directory_loras))
for repo in HF_LORA_PRIVATE_REPOS2:
models2.extend(get_private_model_list(repo, directory_loras))
models = list_uniq(models1 + sorted(models2))
return models
def download_private_file(repo_id, path, is_replace):
from huggingface_hub import hf_hub_download
from pathlib import Path
file = Path(path)
newpath = Path(f'{file.parent.name}/{escape_lora_basename(file.stem)}{file.suffix}') if is_replace else file
hf_read_token = os.environ.get('HF_READ_TOKEN')
if not hf_read_token or newpath.exists(): return
filename = file.name
dirname = file.parent.name
try:
hf_hub_download(repo_id=repo_id, filename=filename, local_dir=dirname, use_auth_token=hf_read_token)
except (EnvironmentError, OSError, ValueError, HTTPError, Timeout) as e:
return
else:
if is_replace:
file.resolve().rename(newpath.resolve())
def download_private_file_from_somewhere(path, is_replace):
if not path in private_model_path_repo_dict.keys(): return
repo_id = private_model_path_repo_dict.get(path, None)
download_private_file(repo_id, path, is_replace)
def get_model_id_list():
api = HfApi()
model_ids = []
try:
models_vp = api.list_models(author="votepurchase", cardData=True, sort="likes")
models_john = api.list_models(author="John6666", cardData=True, sort="last_modified")
except (EnvironmentError, OSError, ValueError, HTTPError, Timeout) as e:
return model_ids
else:
for model in models_vp:
model_ids.append(model.id) if not model.private else ""
anime_models = []
real_models = []
for model in models_john:
if not model.private:
anime_models.append(model.id) if 'anime' in model.tags else real_models.append(model.id)
model_ids.extend(anime_models)
model_ids.extend(real_models)
return model_ids
def get_t2i_model_info(repo_id: str):
api = HfApi()
try:
if " " in repo_id or not api.repo_exists(repo_id): return ""
model = api.model_info(repo_id=repo_id)
except (EnvironmentError, OSError, ValueError, HTTPError, Timeout) as e:
return ""
else:
if model.private or model.gated: return ""
tags = model.tags
info = []
url = f"https://huggingface.co/{repo_id}/"
if not 'diffusers' in tags: return ""
if 'diffusers:StableDiffusionXLPipeline' in tags:
info.append("SDXL")
elif 'diffusers:StableDiffusionPipeline' in tags:
info.append("SD1.5")
if model.card_data and model.card_data.tags:
info.extend(list_sub(model.card_data.tags, ['text-to-image', 'stable-diffusion', 'stable-diffusion-api', 'safetensors', 'stable-diffusion-xl']))
info.append(f"DLs: {model.downloads}")
info.append(f"likes: {model.likes}")
info.append(model.last_modified.strftime("lastmod: %Y-%m-%d"))
md = f"Model Info: {', '.join(info)}, [Model Repo]({url})"
return gr.update(value=md)
def get_tupled_model_list(model_list):
if not model_list: return []
tupled_list = []
for repo_id in model_list:
api = HfApi()
try:
if not api.repo_exists(repo_id): continue
model = api.model_info(repo_id=repo_id)
except (EnvironmentError, OSError, ValueError, HTTPError, Timeout) as e:
continue
else:
if model.private or model.gated: continue
tags = model.tags
info = []
if not 'diffusers' in tags: continue
if 'diffusers:StableDiffusionXLPipeline' in tags:
info.append("SDXL")
elif 'diffusers:StableDiffusionPipeline' in tags:
info.append("SD1.5")
if model.card_data and model.card_data.tags:
info.extend(list_sub(model.card_data.tags, ['text-to-image', 'stable-diffusion', 'stable-diffusion-api', 'safetensors', 'stable-diffusion-xl']))
if "pony" in info:
info.remove("pony")
name = f"{repo_id} (Pony🐴, {', '.join(info)})"
else:
name = f"{repo_id} ({', '.join(info)})"
tupled_list.append((name, repo_id))
return tupled_list
def save_gallery_images(images):
from datetime import datetime, timezone, timedelta
japan_tz = timezone(timedelta(hours=9))
dt_now = datetime.utcnow().replace(tzinfo=timezone.utc).astimezone(japan_tz)
basename = dt_now.strftime('%Y%m%d_%H%M%S_')
i = 1
if not images: return images
output_images = []
output_paths = []
for image in images:
from pathlib import Path
filename = basename + str(i) + ".png"
oldpath = Path(image[0])
newpath = oldpath.resolve().rename(Path(filename).resolve())
output_paths.append(str(newpath))
output_images.append((str(newpath), str(filename)))
i += 1
return gr.update(value=output_images), gr.update(value=output_paths), gr.update(visible=True),
optimization_list = {
"None": [28, 7., 'Euler a', False, None, 1.],
"Default": [28, 7., 'Euler a', False, None, 1.],
"SPO": [28, 7., 'Euler a', True, 'loras/spo_sdxl_10ep_4k-data_lora_diffusers.safetensors', 1.],
"DPO": [28, 7., 'Euler a', True, 'loras/sdxl-DPO-LoRA.safetensors', 1.],
"DPO Turbo": [8, 2.5, 'LCM', True, 'loras/sd_xl_dpo_turbo_lora_v1-128dim.safetensors', 1.],
"SDXL Turbo": [8, 2.5, 'LCM', True, 'loras/sd_xl_turbo_lora_v1.safetensors', 1.],
"Hyper-SDXL 12step": [12, 5., 'Euler a trailing', True, 'loras/Hyper-SDXL-12steps-CFG-lora.safetensors', 0.9],
"Hyper-SDXL 8step": [8, 5., 'Euler a trailing', True, 'loras/Hyper-SDXL-8steps-CFG-lora.safetensors', 0.9],
"Hyper-SDXL 4step": [4, 0, 'Euler a trailing', True, 'loras/Hyper-SDXL-4steps-lora.safetensors', 0.9],
"Hyper-SDXL 2step": [2, 0, 'Euler a trailing', True, 'loras/Hyper-SDXL-2steps-lora.safetensors', 0.9],
"Hyper-SDXL 1step": [1, 0, 'Euler a trailing', True, 'loras/Hyper-SDXL-1steps-lora.safetensors', 0.9],
"PCM 16step": [16, 4., 'Euler a trailing', True, 'loras/pcm_sdxl_normalcfg_16step_converted.safetensors', 1.],
"PCM 8step": [8, 4., 'Euler a trailing', True, 'loras/pcm_sdxl_normalcfg_8step_converted.safetensors', 1.],
"PCM 4step": [4, 2., 'Euler a trailing', True, 'loras/pcm_sdxl_smallcfg_4step_converted.safetensors', 1.],
"PCM 2step": [2, 1., 'Euler a trailing', True, 'loras/pcm_sdxl_smallcfg_2step_converted.safetensors', 1.],
}
def set_optimization(opt, steps_gui, cfg_gui, sampler_gui, clip_skip_gui, lora1_gui, lora_scale_1_gui):
if not opt in list(optimization_list.keys()): opt = "None"
def_steps_gui = 28
def_cfg_gui = 7.
steps = optimization_list.get(opt, "None")[0]
cfg = optimization_list.get(opt, "None")[1]
sampler = optimization_list.get(opt, "None")[2]
clip_skip = optimization_list.get(opt, "None")[3]
lora1 = optimization_list.get(opt, "None")[4]
lora_scale_1 = optimization_list.get(opt, "None")[5]
if opt == "None":
steps = max(steps_gui, def_steps_gui)
cfg = max(cfg_gui, def_cfg_gui)
clip_skip = clip_skip_gui
elif opt == "SPO" or opt == "DPO":
steps = max(steps_gui, def_steps_gui)
cfg = max(cfg_gui, def_cfg_gui)
return gr.update(value=steps), gr.update(value=cfg), gr.update(value=sampler),\
gr.update(value=clip_skip), gr.update(value=lora1), gr.update(value=lora_scale_1),
def set_lora_prompt(prompt_gui, prompt_syntax_gui, lora1_gui, lora_scale_1_gui, lora2_gui, lora_scale_2_gui,\
lora3_gui, lora_scale_3_gui, lora4_gui, lora_scale_4_gui, lora5_gui, lora_scale_5_gui):
import os
if not "Classic" in str(prompt_syntax_gui): return prompt_gui
loras = []
if lora1_gui:
basename = os.path.splitext(os.path.basename(lora1_gui))[0]
loras.append(f"<lora:{basename}:{lora_scale_1_gui:.2f}>")
if lora2_gui:
basename = os.path.splitext(os.path.basename(lora2_gui))[0]
loras.append(f"<lora:{basename}:{lora_scale_2_gui:.2f}>")
if lora3_gui:
basename = os.path.splitext(os.path.basename(lora3_gui))[0]
loras.append(f"<lora:{basename}:{lora_scale_3_gui:.2f}>")
if lora4_gui:
basename = os.path.splitext(os.path.basename(lora4_gui))[0]
loras.append(f"<lora:{basename}:{lora_scale_4_gui:.2f}>")
if lora5_gui:
basename = os.path.splitext(os.path.basename(lora5_gui))[0]
loras.append(f"<lora:{basename}:{lora_scale_5_gui:.2f}>")
tags = prompt_gui.split(",") if prompt_gui else []
prompts = []
for tag in tags:
tag = str(tag).strip()
if tag and not "<lora" in tag:
prompts.append(tag)
empty = [""]
prompt = ", ".join(prompts + loras + empty)
return gr.update(value=prompt)
temp_dict = {}
lora_trigger_dict = {}
with open('lora_dict.json', encoding='utf-8') as f:
temp_dict = json.load(f)
for k, v in temp_dict.items():
lora_trigger_dict[escape_lora_basename(k)] = v
civitai_not_exists_list = []
def get_civitai_info(path):
global civitai_not_exists_list
import requests
from urllib3.util import Retry
from requests.adapters import HTTPAdapter
if path in set(civitai_not_exists_list): return ["", "", "", "", ""]
from pathlib import Path
if not Path(path).exists(): return None
user_agent = get_user_agent()
headers = {'User-Agent': user_agent, 'content-type': 'application/json'}
base_url = 'https://civitai.com/api/v1/model-versions/by-hash/'
params = {}
session = requests.Session()
retries = Retry(total=5, backoff_factor=1, status_forcelist=[500, 502, 503, 504])
session.mount("https://", HTTPAdapter(max_retries=retries))
import hashlib
with open(path, 'rb') as file:
file_data = file.read()
hash_sha256 = hashlib.sha256(file_data).hexdigest()
url = base_url + hash_sha256
try:
r = session.get(url, params=params, headers=headers, stream=True, timeout=(3.0, 15))
except (HTTPError, Timeout) as e:
return ["", "", "", "", ""]
else:
if not r.ok: return None
json = r.json()
if not 'baseModel' in json:
civitai_not_exists_list.append(path)
return ["", "", "", "", ""]
items = []
items.append(" / ".join(json['trainedWords']))
items.append(json['baseModel'])
items.append(json['model']['name'])
items.append(f"https://civitai.com/models/{json['modelId']}")
items.append(json['images'][0]['url'])
return items
def update_lora_dict(path):
global lora_trigger_dict
from pathlib import Path
key = escape_lora_basename(Path(path).stem)
if key in lora_trigger_dict.keys(): return
items = get_civitai_info(path)
if items == None: return
lora_trigger_dict[key] = items
def get_lora_tupled_list(lora_model_list):
global lora_trigger_dict
from pathlib import Path
if not lora_model_list: return []
tupled_list = []
local_models = set(get_model_list(directory_loras))
for model in lora_model_list:
if not model: continue
basename = Path(model).stem
key = escape_lora_basename(basename)
items = None
if key in lora_trigger_dict.keys():
items = lora_trigger_dict.get(key, None)
elif model in local_models:
items = get_civitai_info(model)
if items != None:
lora_trigger_dict[key] = items
name = basename
value = model
if items and items[2] != "":
if items[1] == "Pony":
name = f"{basename} (for {items[1]}🐴, {items[2]})"
else:
name = f"{basename} (for {items[1]}, {items[2]})"
tupled_list.append((name, value))
return tupled_list
def set_lora_trigger(lora_gui: str):
from pathlib import Path
if lora_gui == None: return gr.update(value="", visible=False), gr.update(visible=False),\
gr.update(value="", visible=False), gr.update(value="", visible=True)
path = Path(lora_gui)
new_path = Path(f'{path.parent.name}/{escape_lora_basename(path.stem)}{path.suffix}')
if not new_path.stem in lora_trigger_dict.keys() and not str(path) in set(get_private_lora_model_lists() + get_model_list(directory_loras)):
return gr.update(value="", visible=False), gr.update(visible=False),\
gr.update(value="", visible=False), gr.update(value="", visible=True)
if not new_path.exists():
download_private_file_from_somewhere(str(path), True)
basename = new_path.stem
tag = ""
label = f'Trigger: {basename} / Prompt:'
value = "None"
md = "None"
flag = False
items = lora_trigger_dict.get(basename, None)
if items == None:
items = get_civitai_info(str(new_path))
if items != None:
lora_trigger_dict[basename] = items
flag = True
if items and items[2] != "":
tag = items[0]
label = f'Trigger: {basename} / Prompt:'
if items[1] == "Pony":
label = f'Trigger: {basename} / Prompt (for Pony🐴):'
if items[4]:
md = f'<img src="{items[4]}" alt="thumbnail" width="150" height="240"><br>[LoRA Model URL]({items[3]})'
elif items[3]:
md = f'[LoRA Model URL]({items[3]})'
if tag and flag:
new_lora_model_list = list_uniq(get_private_lora_model_lists() + get_model_list(directory_loras))
return gr.update(value=tag, label=label, visible=True), gr.update(visible=True),\
gr.update(value=md, visible=True), gr.update(value=str(new_path), choices=get_lora_tupled_list(new_lora_model_list))
elif tag:
return gr.update(value=tag, label=label, visible=True), gr.update(visible=True),\
gr.update(value=md, visible=True), gr.update(value=str(new_path))
else:
return gr.update(value=value, label=label, visible=True), gr.update(visible=True),\
gr.update(value=md, visible=True), gr.update(visible=True)
def apply_lora_prompt(prompt_gui: str, lora_trigger_gui: str):
if lora_trigger_gui == "None": return gr.update(value=prompt_gui)
tags = prompt_gui.split(",") if prompt_gui else []
prompts = normalize_prompt_list(tags)
lora_tag = lora_trigger_gui.replace("/",",")
lora_tags = lora_tag.split(",") if str(lora_trigger_gui) != "None" else []
lora_prompts = normalize_prompt_list(lora_tags)
empty = [""]
prompt = ", ".join(list_uniq(prompts + lora_prompts) + empty)
return gr.update(value=prompt)
def upload_file_lora(files):
file_paths = [file.name for file in files]
return gr.update(value=file_paths, visible=True), gr.update(visible=True)
def move_file_lora(filepaths):
import shutil
from pathlib import Path
for file in filepaths:
path = Path(shutil.move(Path(file).resolve(), Path(f"./{directory_loras}").resolve()))
newpath = Path(f'{path.parent.name}/{escape_lora_basename(path.stem)}{path.suffix}')
path.resolve().rename(newpath.resolve())
update_lora_dict(str(newpath))
new_lora_model_list = list_uniq(get_private_lora_model_lists() + get_model_list(directory_loras))
new_lora_model_list.insert(0, "None")
return gr.update(
choices=get_lora_tupled_list(new_lora_model_list), value=new_lora_model_list[-1]
), gr.update(
choices=get_lora_tupled_list(new_lora_model_list)
), gr.update(
choices=get_lora_tupled_list(new_lora_model_list)
), gr.update(
choices=get_lora_tupled_list(new_lora_model_list)
), gr.update(
choices=get_lora_tupled_list(new_lora_model_list)
),
def search_lora_on_civitai(query: str, allow_model: list[str]):
import requests
from urllib3.util import Retry
from requests.adapters import HTTPAdapter
if not query: return None
user_agent = get_user_agent()
headers = {'User-Agent': user_agent, 'content-type': 'application/json'}
base_url = 'https://civitai.com/api/v1/models'
params = {'query': query, 'types': ['LORA'], 'sort': 'Highest Rated', 'period': 'AllTime',
'nsfw': 'true', 'supportsGeneration ': 'true'}
session = requests.Session()
retries = Retry(total=5, backoff_factor=1, status_forcelist=[500, 502, 503, 504])
session.mount("https://", HTTPAdapter(max_retries=retries))
try:
r = session.get(base_url, params=params, headers=headers, stream=True, timeout=(3.0, 30))
except (HTTPError, Timeout) as e:
return None
else:
if not r.ok: return None
json = r.json()
if not 'items' in json: return None
items = []
for j in json['items']:
for model in j['modelVersions']:
item = {}
if not model['baseModel'] in set(allow_model): continue
item['name'] = j['name']
item['creator'] = j['creator']['username']
item['tags'] = j['tags']
item['model_name'] = model['name']
item['base_model'] = model['baseModel']
item['dl_url'] = model['downloadUrl']
item['md'] = f'<img src="{model["images"][0]["url"]}" alt="thumbnail" width="150" height="240"><br>[LoRA Model URL](https://civitai.com/models/{j["id"]})'
items.append(item)
return items
civitai_lora_last_results = {}
def search_civitai_lora(query, base_model):
global civitai_lora_last_results
items = search_lora_on_civitai(query, base_model)
if not items: return gr.update(choices=[("", "")], value="", visible=False),\
gr.update(value="", visible=False), gr.update(visible=True), gr.update(visible=True)
civitai_lora_last_results = {}
choices = []
for item in items:
base_model_name = "Pony🐴" if item['base_model'] == "Pony" else item['base_model']
name = f"{item['name']} (for {base_model_name} / By: {item['creator']} / Tags: {', '.join(item['tags'])})"
value = item['dl_url']
choices.append((name, value))
civitai_lora_last_results[value] = item['md']
if not choices: return gr.update(choices=[("", "")], value="", visible=False),\
gr.update(value="", visible=False), gr.update(visible=True), gr.update(visible=True)
md = civitai_lora_last_results.get(choices[0][1], "None")
return gr.update(choices=choices, value=choices[0][1], visible=True), gr.update(value=md, visible=True),\
gr.update(visible=True), gr.update(visible=True)
def select_civitai_lora(search_result):
if not "http" in search_result: return gr.update(value=""), gr.update(value="None", visible=True)
md = civitai_lora_last_results.get(search_result, "None")
return gr.update(value=search_result), gr.update(value=md, visible=True)
quality_prompt_list = [
{
"name": "None",
"prompt": "",
"negative_prompt": "lowres",
},
{
"name": "Animagine Common",
"prompt": "anime artwork, anime style, key visual, vibrant, studio anime, highly detailed, masterpiece, best quality, very aesthetic, absurdres",
"negative_prompt": "lowres, (bad), text, error, fewer, extra, missing, worst quality, jpeg artifacts, low quality, watermark, unfinished, displeasing, oldest, early, chromatic aberration, signature, extra digits, artistic error, username, scan, [abstract]",
},
{
"name": "Pony Anime Common",
"prompt": "source_anime, score_9, score_8_up, score_7_up, masterpiece, best quality, very aesthetic, absurdres",
"negative_prompt": "source_pony, source_furry, source_cartoon, score_6, score_5, score_4, busty, ugly face, mutated hands, low res, blurry face, black and white, the simpsons, overwatch, apex legends",
},
{
"name": "Pony Common",
"prompt": "source_anime, score_9, score_8_up, score_7_up",
"negative_prompt": "source_pony, source_furry, source_cartoon, score_6, score_5, score_4, busty, ugly face, mutated hands, low res, blurry face, black and white, the simpsons, overwatch, apex legends",
},
{
"name": "Animagine Standard v3.0",
"prompt": "masterpiece, best quality",
"negative_prompt": "lowres, bad anatomy, bad hands, text, error, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality, normal quality, jpeg artifacts, signature, watermark, username, blurry, artist name",
},
{
"name": "Animagine Standard v3.1",
"prompt": "masterpiece, best quality, very aesthetic, absurdres",
"negative_prompt": "lowres, (bad), text, error, fewer, extra, missing, worst quality, jpeg artifacts, low quality, watermark, unfinished, displeasing, oldest, early, chromatic aberration, signature, extra digits, artistic error, username, scan, [abstract]",
},
{
"name": "Animagine Light v3.1",
"prompt": "(masterpiece), best quality, very aesthetic, perfect face",
"negative_prompt": "(low quality, worst quality:1.2), very displeasing, 3d, watermark, signature, ugly, poorly drawn",
},
{
"name": "Animagine Heavy v3.1",
"prompt": "(masterpiece), (best quality), (ultra-detailed), very aesthetic, illustration, disheveled hair, perfect composition, moist skin, intricate details",
"negative_prompt": "longbody, lowres, bad anatomy, bad hands, missing fingers, pubic hair, extra digit, fewer digits, cropped, worst quality, low quality, very displeasing",
},
]
style_list = [
{
"name": "None",
"prompt": "",
"negative_prompt": "",
},
{
"name": "Cinematic",
"prompt": "cinematic still, emotional, harmonious, vignette, highly detailed, high budget, bokeh, cinemascope, moody, epic, gorgeous, film grain, grainy",
"negative_prompt": "cartoon, graphic, text, painting, crayon, graphite, abstract, glitch, deformed, mutated, ugly, disfigured",
},
{
"name": "Photographic",
"prompt": "cinematic photo, 35mm photograph, film, bokeh, professional, 4k, highly detailed",
"negative_prompt": "drawing, painting, crayon, sketch, graphite, impressionist, noisy, blurry, soft, deformed, ugly",
},
{
"name": "Anime",
"prompt": "anime artwork, anime style, key visual, vibrant, studio anime, highly detailed",
"negative_prompt": "photo, deformed, black and white, realism, disfigured, low contrast",
},
{
"name": "Manga",
"prompt": "manga style, vibrant, high-energy, detailed, iconic, Japanese comic style",
"negative_prompt": "ugly, deformed, noisy, blurry, low contrast, realism, photorealistic, Western comic style",
},
{
"name": "Digital Art",
"prompt": "concept art, digital artwork, illustrative, painterly, matte painting, highly detailed",
"negative_prompt": "photo, photorealistic, realism, ugly",
},
{
"name": "Pixel art",
"prompt": "pixel-art, low-res, blocky, pixel art style, 8-bit graphics",
"negative_prompt": "sloppy, messy, blurry, noisy, highly detailed, ultra textured, photo, realistic",
},
{
"name": "Fantasy art",
"prompt": "ethereal fantasy concept art, magnificent, celestial, ethereal, painterly, epic, majestic, magical, fantasy art, cover art, dreamy",
"negative_prompt": "photographic, realistic, realism, 35mm film, dslr, cropped, frame, text, deformed, glitch, noise, noisy, off-center, deformed, cross-eyed, closed eyes, bad anatomy, ugly, disfigured, sloppy, duplicate, mutated, black and white",
},
{
"name": "Neonpunk",
"prompt": "neonpunk style, cyberpunk, vaporwave, neon, vibes, vibrant, stunningly beautiful, crisp, detailed, sleek, ultramodern, magenta highlights, dark purple shadows, high contrast, cinematic, ultra detailed, intricate, professional",
"negative_prompt": "painting, drawing, illustration, glitch, deformed, mutated, cross-eyed, ugly, disfigured",
},
{
"name": "3D Model",
"prompt": "professional 3d model, octane render, highly detailed, volumetric, dramatic lighting",
"negative_prompt": "ugly, deformed, noisy, low poly, blurry, painting",
},
]
# [sampler_gui, steps_gui, cfg_gui, clip_skip_gui, img_width_gui, img_height_gui, optimization_gui]
preset_sampler_setting = {
"None": ["Euler a", 28, 7., True, 1024, 1024, "None"],
"Anime 3:4 Fast": ["LCM", 8, 2.5, True, 896, 1152, "DPO Turbo"],
"Anime 3:4 Standard": ["Euler a", 28, 7., True, 896, 1152, "None"],
"Anime 3:4 Heavy": ["Euler a", 40, 7., True, 896, 1152, "None"],
"Anime 1:1 Fast": ["LCM", 8, 2.5, True, 1024, 1024, "DPO Turbo"],
"Anime 1:1 Standard": ["Euler a", 28, 7., True, 1024, 1024, "None"],
"Anime 1:1 Heavy": ["Euler a", 40, 7., True, 1024, 1024, "None"],
"Photo 3:4 Fast": ["LCM", 8, 2.5, False, 896, 1152, "DPO Turbo"],
"Photo 3:4 Standard": ["DPM++ 2M Karras", 28, 7., False, 896, 1152, "None"],
"Photo 3:4 Heavy": ["DPM++ 2M Karras", 40, 7., False, 896, 1152, "None"],
"Photo 1:1 Fast": ["LCM", 8, 2.5, False, 1024, 1024, "DPO Turbo"],
"Photo 1:1 Standard": ["DPM++ 2M Karras", 28, 7., False, 1024, 1024, "None"],
"Photo 1:1 Heavy": ["DPM++ 2M Karras", 40, 7., False, 1024, 1024, "None"],
}
def set_sampler_settings(sampler_setting):
if not sampler_setting in list(preset_sampler_setting.keys()) or sampler_setting == "None":
return gr.update(value="Euler a"), gr.update(value=28), gr.update(value=7.), gr.update(value=True),\
gr.update(value=1024), gr.update(value=1024), gr.update(value="None")
v = preset_sampler_setting.get(sampler_setting, ["Euler a", 28, 7., True, 1024, 1024])
# sampler, steps, cfg, clip_skip, width, height, optimization
return gr.update(value=v[0]), gr.update(value=v[1]), gr.update(value=v[2]), gr.update(value=v[3]),\
gr.update(value=v[4]), gr.update(value=v[5]), gr.update(value=v[6])
preset_styles = {k["name"]: (k["prompt"], k["negative_prompt"]) for k in style_list}
preset_quality = {k["name"]: (k["prompt"], k["negative_prompt"]) for k in quality_prompt_list}
def process_style_prompt(prompt: str, neg_prompt: str, styles_key: str = "None", quality_key: str = "None", type: str = "None"):
def to_list(s):
return [x.strip() for x in s.split(",") if not s == ""]
def list_sub(a, b):
return [e for e in a if e not in b]
def list_uniq(l):
return sorted(set(l), key=l.index)
animagine_ps = to_list("anime artwork, anime style, key visual, vibrant, studio anime, highly detailed, masterpiece, best quality, very aesthetic, absurdres")
animagine_nps = to_list("lowres, (bad), text, error, fewer, extra, missing, worst quality, jpeg artifacts, low quality, watermark, unfinished, displeasing, oldest, early, chromatic aberration, signature, extra digits, artistic error, username, scan, [abstract]")
pony_ps = to_list("source_anime, score_9, score_8_up, score_7_up, masterpiece, best quality, very aesthetic, absurdres")
pony_nps = to_list("source_pony, source_furry, source_cartoon, score_6, score_5, score_4, busty, ugly face, mutated hands, low res, blurry face, black and white, the simpsons, overwatch, apex legends")
prompts = to_list(prompt)
neg_prompts = to_list(neg_prompt)
all_styles_ps = []
all_styles_nps = []
for d in style_list:
all_styles_ps.extend(to_list(str(d.get("prompt", ""))))
all_styles_nps.extend(to_list(str(d.get("negative_prompt", ""))))
all_quality_ps = []
all_quality_nps = []
for d in quality_prompt_list:
all_quality_ps.extend(to_list(str(d.get("prompt", ""))))
all_quality_nps.extend(to_list(str(d.get("negative_prompt", ""))))
quality_ps = to_list(preset_quality[quality_key][0])
quality_nps = to_list(preset_quality[quality_key][1])
styles_ps = to_list(preset_styles[styles_key][0])
styles_nps = to_list(preset_styles[styles_key][1])
prompts = list_sub(prompts, animagine_ps + pony_ps + all_styles_ps + all_quality_ps)
neg_prompts = list_sub(neg_prompts, animagine_nps + pony_nps + all_styles_nps + all_quality_nps)
last_empty_p = [""] if not prompts and type != "None" and styles_key != "None" and quality_key != "None" else []
last_empty_np = [""] if not neg_prompts and type != "None" and styles_key != "None" and quality_key != "None" else []
if type == "Animagine":
prompts = prompts + animagine_ps
neg_prompts = neg_prompts + animagine_nps
elif type == "Pony":
prompts = prompts + pony_ps
neg_prompts = neg_prompts + pony_nps
prompts = prompts + styles_ps + quality_ps
neg_prompts = neg_prompts + styles_nps + quality_nps
prompt = ", ".join(list_uniq(prompts) + last_empty_p)
neg_prompt = ", ".join(list_uniq(neg_prompts) + last_empty_np)
return prompt, neg_prompt
def set_quick_presets(genre:str = "None", type:str = "None", speed:str = "None", aspect:str = "None"):
quality = "None"
style = "None"
sampler = "None"
opt = "None"
if genre == "Anime":
style = "Anime"
if aspect == "1:1":
if speed == "Heavy":
sampler = "Anime 1:1 Heavy"
elif speed == "Fast":
sampler = "Anime 1:1 Fast"
else:
sampler = "Anime 1:1 Standard"
elif aspect == "3:4":
if speed == "Heavy":
sampler = "Anime 3:4 Heavy"
elif speed == "Fast":
sampler = "Anime 3:4 Fast"
else:
sampler = "Anime 3:4 Standard"
if type == "Pony":
quality = "Pony Anime Common"
else:
quality = "Animagine Common"
elif genre == "Photo":
style = "Photographic"
if aspect == "1:1":
if speed == "Heavy":
sampler = "Photo 1:1 Heavy"
elif speed == "Fast":
sampler = "Photo 1:1 Fast"
else:
sampler = "Photo 1:1 Standard"
elif aspect == "3:4":
if speed == "Heavy":
sampler = "Photo 3:4 Heavy"
elif speed == "Fast":
sampler = "Photo 3:4 Fast"
else:
sampler = "Photo 3:4 Standard"
if type == "Pony":
quality = "Pony Common"
else:
quality = "None"
if speed == "Fast":
opt = "DPO Turbo"
if genre == "Anime" and type != "Pony": quality = "Animagine Light v3.1"
return gr.update(value=quality), gr.update(value=style), gr.update(value=sampler), gr.update(value=opt)
textual_inversion_dict = {}
with open('textual_inversion_dict.json', encoding='utf-8') as f:
textual_inversion_dict = json.load(f)
textual_inversion_file_token_list = []
def get_tupled_embed_list(embed_list):
from pathlib import Path
global textual_inversion_file_list
tupled_list = []
for file in embed_list:
token = textual_inversion_dict.get(Path(file).name, [Path(file).stem.replace(",",""), False])[0]
tupled_list.append((token, file))
textual_inversion_file_token_list.append(token)
return tupled_list
def set_textual_inversion_prompt(textual_inversion_gui, prompt_gui, neg_prompt_gui, prompt_syntax_gui):
ti_tags = list(textual_inversion_dict.values()) + textual_inversion_file_token_list
tags = prompt_gui.split(",") if prompt_gui else []
prompts = []
for tag in tags:
tag = str(tag).strip()
if tag and not tag in ti_tags:
prompts.append(tag)
ntags = neg_prompt_gui.split(",") if neg_prompt_gui else []
neg_prompts = []
for tag in ntags:
tag = str(tag).strip()
if tag and not tag in ti_tags:
neg_prompts.append(tag)
ti_prompts = []
ti_neg_prompts = []
for ti in textual_inversion_gui:
from pathlib import Path
tokens = textual_inversion_dict.get(Path(ti).name, [Path(ti).stem.replace(",",""), False])
is_positive = tokens[1] == True or "positive" in Path(ti).parent.name
if is_positive: # positive prompt
ti_prompts.append(tokens[0])
else: # negative prompt (default)
ti_neg_prompts.append(tokens[0])
empty = [""]
prompt = ", ".join(prompts + ti_prompts + empty)
neg_prompt = ", ".join(neg_prompts + ti_neg_prompts + empty)
return gr.update(value=prompt), gr.update(value=neg_prompt),
def get_model_pipeline(repo_id: str):
from huggingface_hub import HfApi
api = HfApi()
default = "StableDiffusionPipeline"
try:
if " " in repo_id or not api.repo_exists(repo_id): return default
model = api.model_info(repo_id=repo_id)
except (EnvironmentError, OSError, ValueError, HTTPError, Timeout) as e:
return default
else:
if model.private or model.gated: return default
tags = model.tags
if not 'diffusers' in tags: return default
if 'diffusers:StableDiffusionXLPipeline' in tags:
return "StableDiffusionXLPipeline"
elif 'diffusers:StableDiffusionPipeline' in tags:
return "StableDiffusionPipeline"
else:
return default
|