Spaces:
Running
on
Zero
Running
on
Zero
Upload 4 files
Browse files- app.py +197 -204
- env.py +1 -1
- modutils.py +3 -3
app.py
CHANGED
@@ -2,12 +2,11 @@ import spaces
|
|
2 |
import gradio as gr
|
3 |
import os
|
4 |
from stablepy import Model_Diffusers
|
5 |
-
from stablepy.diffusers_vanilla.model import scheduler_names
|
6 |
from stablepy.diffusers_vanilla.style_prompt_config import STYLE_NAMES
|
|
|
7 |
import torch
|
8 |
import re
|
9 |
-
import
|
10 |
-
import random
|
11 |
from stablepy import (
|
12 |
CONTROLNET_MODEL_IDS,
|
13 |
VALID_TASKS,
|
@@ -23,9 +22,9 @@ from stablepy import (
|
|
23 |
SD15_TASKS,
|
24 |
SDXL_TASKS,
|
25 |
)
|
26 |
-
import urllib.parse
|
27 |
|
28 |
-
|
29 |
"openpose": [
|
30 |
"Openpose",
|
31 |
"None",
|
@@ -97,7 +96,7 @@ preprocessor_controlnet = {
|
|
97 |
],
|
98 |
}
|
99 |
|
100 |
-
|
101 |
'txt2img': 'txt2img',
|
102 |
'img2img': 'img2img',
|
103 |
'inpaint': 'inpaint',
|
@@ -123,8 +122,35 @@ task_stablepy = {
|
|
123 |
'tile ControlNet': 'tile',
|
124 |
}
|
125 |
|
126 |
-
|
127 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
128 |
|
129 |
def download_things(directory, url, hf_token="", civitai_api_key=""):
|
130 |
url = url.strip()
|
@@ -155,21 +181,19 @@ def download_things(directory, url, hf_token="", civitai_api_key=""):
|
|
155 |
else:
|
156 |
os.system(f"aria2c --console-log-level=error --summary-interval=10 -c -x 16 -k 1M -s 16 -d {directory} {url}")
|
157 |
|
158 |
-
|
159 |
def get_model_list(directory_path):
|
160 |
model_list = []
|
161 |
valid_extensions = {'.ckpt', '.pt', '.pth', '.safetensors', '.bin'}
|
162 |
|
163 |
for filename in os.listdir(directory_path):
|
164 |
if os.path.splitext(filename)[1] in valid_extensions:
|
165 |
-
name_without_extension = os.path.splitext(filename)[0]
|
166 |
file_path = os.path.join(directory_path, filename)
|
167 |
# model_list.append((name_without_extension, file_path))
|
168 |
model_list.append(file_path)
|
169 |
print('\033[34mFILE: ' + file_path + '\033[0m')
|
170 |
return model_list
|
171 |
|
172 |
-
|
173 |
## BEGIN MOD
|
174 |
from modutils import (list_uniq, download_private_repo, get_model_id_list, get_tupled_embed_list,
|
175 |
get_lora_model_list, get_all_lora_tupled_list, update_loras, apply_lora_prompt, set_prompt_loras,
|
@@ -178,7 +202,7 @@ from modutils import (list_uniq, download_private_repo, get_model_id_list, get_t
|
|
178 |
get_tupled_model_list, save_gallery_images, set_optimization, set_sampler_settings,
|
179 |
set_quick_presets, process_style_prompt, optimization_list, save_images,
|
180 |
preset_styles, preset_quality, preset_sampler_setting, translate_to_en)
|
181 |
-
from env import (
|
182 |
HF_SDXL_EMBEDS_NEGATIVE_PRIVATE_REPO, HF_SDXL_EMBEDS_POSITIVE_PRIVATE_REPO,
|
183 |
directory_models, directory_loras, directory_vaes, directory_embeds, directory_embeds_sdxl,
|
184 |
directory_embeds_positive_sdxl, load_diffusers_format_model,
|
@@ -200,18 +224,18 @@ load_diffusers_format_model = list_uniq(get_model_id_list() + load_diffusers_for
|
|
200 |
# Download stuffs
|
201 |
for url in [url.strip() for url in download_model.split(',')]:
|
202 |
if not os.path.exists(f"./models/{url.split('/')[-1]}"):
|
203 |
-
download_things(directory_models, url,
|
204 |
for url in [url.strip() for url in download_vae.split(',')]:
|
205 |
if not os.path.exists(f"./vaes/{url.split('/')[-1]}"):
|
206 |
-
download_things(directory_vaes, url,
|
207 |
for url in [url.strip() for url in download_lora.split(',')]:
|
208 |
if not os.path.exists(f"./loras/{url.split('/')[-1]}"):
|
209 |
-
download_things(directory_loras, url,
|
210 |
|
211 |
# Download Embeddings
|
212 |
for url_embed in download_embeds:
|
213 |
if not os.path.exists(f"./embedings/{url_embed.split('/')[-1]}"):
|
214 |
-
download_things(directory_embeds, url_embed,
|
215 |
|
216 |
# Build list models
|
217 |
embed_list = get_model_list(directory_embeds)
|
@@ -232,46 +256,80 @@ def get_embed_list(pipeline_name):
|
|
232 |
|
233 |
print('\033[33m🏁 Download and listing of valid models completed.\033[0m')
|
234 |
|
235 |
-
|
236 |
-
|
237 |
-
|
238 |
-
|
239 |
-
|
240 |
-
|
241 |
-
|
242 |
-
|
243 |
-
|
244 |
-
|
245 |
-
|
246 |
-
|
247 |
-
|
248 |
-
|
249 |
-
|
250 |
-
|
251 |
-
|
252 |
-
|
253 |
-
|
254 |
-
|
255 |
-
|
256 |
-
|
257 |
-
|
258 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
259 |
}
|
260 |
|
261 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
262 |
|
263 |
def extract_parameters(input_string):
|
264 |
parameters = {}
|
265 |
input_string = input_string.replace("\n", "")
|
266 |
|
267 |
-
if
|
268 |
print("Negative prompt not detected")
|
269 |
parameters["prompt"] = input_string
|
270 |
return parameters
|
271 |
|
272 |
parm = input_string.split("Negative prompt:")
|
273 |
parameters["prompt"] = parm[0]
|
274 |
-
if
|
275 |
print("Steps not detected")
|
276 |
parameters["neg_prompt"] = parm[1]
|
277 |
return parameters
|
@@ -299,45 +357,6 @@ def extract_parameters(input_string):
|
|
299 |
|
300 |
return parameters
|
301 |
|
302 |
-
|
303 |
-
#######################
|
304 |
-
# GUI
|
305 |
-
#######################
|
306 |
-
import gradio as gr
|
307 |
-
from PIL import Image
|
308 |
-
import IPython.display
|
309 |
-
import time, json
|
310 |
-
from IPython.utils import capture
|
311 |
-
import logging
|
312 |
-
logging.getLogger("diffusers").setLevel(logging.ERROR)
|
313 |
-
import diffusers
|
314 |
-
diffusers.utils.logging.set_verbosity(40)
|
315 |
-
import warnings
|
316 |
-
warnings.filterwarnings(action="ignore", category=FutureWarning, module="diffusers")
|
317 |
-
warnings.filterwarnings(action="ignore", category=UserWarning, module="diffusers")
|
318 |
-
warnings.filterwarnings(action="ignore", category=FutureWarning, module="transformers")
|
319 |
-
## BEGIN MOD
|
320 |
-
from stablepy import logger
|
321 |
-
logger.setLevel(logging.CRITICAL)
|
322 |
-
|
323 |
-
from v2 import V2_ALL_MODELS, v2_random_prompt, v2_upsampling_prompt
|
324 |
-
from utils import (gradio_copy_text, COPY_ACTION_JS, gradio_copy_prompt,
|
325 |
-
V2_ASPECT_RATIO_OPTIONS, V2_RATING_OPTIONS, V2_LENGTH_OPTIONS, V2_IDENTITY_OPTIONS)
|
326 |
-
from tagger import (predict_tags_wd, convert_danbooru_to_e621_prompt,
|
327 |
-
remove_specific_prompt, insert_recom_prompt, insert_model_recom_prompt,
|
328 |
-
compose_prompt_to_copy, translate_prompt, select_random_character)
|
329 |
-
def description_ui():
|
330 |
-
gr.Markdown(
|
331 |
-
"""
|
332 |
-
## Danbooru Tags Transformer V2 Demo with WD Tagger
|
333 |
-
(Image =>) Prompt => Upsampled longer prompt
|
334 |
-
- Mod of p1atdev's [Danbooru Tags Transformer V2 Demo](https://huggingface.co/spaces/p1atdev/danbooru-tags-transformer-v2) and [WD Tagger with 🤗 transformers](https://huggingface.co/spaces/p1atdev/wd-tagger-transformers).
|
335 |
-
- Models: p1atdev's [wd-swinv2-tagger-v3-hf](https://huggingface.co/p1atdev/wd-swinv2-tagger-v3-hf), [dart-v2-moe-sft](https://huggingface.co/p1atdev/dart-v2-moe-sft)
|
336 |
-
"""
|
337 |
-
)
|
338 |
-
## END MOD
|
339 |
-
|
340 |
-
|
341 |
def info_html(json_data, title, subtitle):
|
342 |
return f"""
|
343 |
<div style='padding: 0; border-radius: 10px;'>
|
@@ -349,6 +368,18 @@ def info_html(json_data, title, subtitle):
|
|
349 |
</div>
|
350 |
"""
|
351 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
352 |
class GuiSD:
|
353 |
def __init__(self):
|
354 |
self.model = None
|
@@ -368,23 +399,21 @@ class GuiSD:
|
|
368 |
yield f"Loading model: {model_name}"
|
369 |
|
370 |
vae_model = vae_model if vae_model != "None" else None
|
|
|
371 |
|
372 |
-
if
|
373 |
-
|
374 |
-
|
375 |
-
|
376 |
-
incompatible_vae = (model_is_xl and vae_model and not sdxl_in_vae) or (not model_is_xl and sdxl_in_vae)
|
377 |
-
|
378 |
-
if incompatible_vae:
|
379 |
-
vae_model = None
|
380 |
|
381 |
self.model.device = torch.device("cpu")
|
|
|
382 |
|
383 |
self.model.load_pipe(
|
384 |
model_name,
|
385 |
-
task_name=
|
386 |
vae_model=vae_model if vae_model != "None" else None,
|
387 |
-
type_model_precision=
|
388 |
retain_task_model_in_cache=False,
|
389 |
)
|
390 |
yield f"Model loaded: {model_name}"
|
@@ -504,6 +533,8 @@ class GuiSD:
|
|
504 |
vae_msg = f"VAE: {vae_model}" if vae_model else ""
|
505 |
msg_lora = []
|
506 |
|
|
|
|
|
507 |
## BEGIN MOD
|
508 |
global lora_model_list
|
509 |
lora_model_list = get_lora_model_list()
|
@@ -512,33 +543,8 @@ class GuiSD:
|
|
512 |
lora_scale3, lora4, lora_scale4, lora5, lora_scale5)
|
513 |
prompt, neg_prompt = insert_model_recom_prompt(prompt, neg_prompt, model_name)
|
514 |
## END MOD
|
515 |
-
|
516 |
-
if model_name in model_list:
|
517 |
-
model_is_xl = "xl" in model_name.lower()
|
518 |
-
sdxl_in_vae = vae_model and "sdxl" in vae_model.lower()
|
519 |
-
model_type = "SDXL" if model_is_xl else "SD 1.5"
|
520 |
-
incompatible_vae = (model_is_xl and vae_model and not sdxl_in_vae) or (not model_is_xl and sdxl_in_vae)
|
521 |
-
|
522 |
-
if incompatible_vae:
|
523 |
-
msg_inc_vae = (
|
524 |
-
f"The selected VAE is for a { 'SD 1.5' if model_is_xl else 'SDXL' } model, but you"
|
525 |
-
f" are using a { model_type } model. The default VAE "
|
526 |
-
"will be used."
|
527 |
-
)
|
528 |
-
gr.Info(msg_inc_vae)
|
529 |
-
vae_msg = msg_inc_vae
|
530 |
-
vae_model = None
|
531 |
|
532 |
-
|
533 |
-
if la is not None and la != "None" and la != "" and la in lora_model_list:
|
534 |
-
print(la)
|
535 |
-
lora_type = ("animetarot" in la.lower() or "Hyper-SD15-8steps".lower() in la.lower())
|
536 |
-
if (model_is_xl and lora_type) or (not model_is_xl and not lora_type):
|
537 |
-
msg_inc_lora = f"The LoRA {la} is for { 'SD 1.5' if model_is_xl else 'SDXL' }, but you are using { model_type }."
|
538 |
-
gr.Info(msg_inc_lora)
|
539 |
-
msg_lora.append(msg_inc_lora)
|
540 |
-
|
541 |
-
task = task_stablepy[task]
|
542 |
|
543 |
params_ip_img = []
|
544 |
params_ip_msk = []
|
@@ -560,18 +566,6 @@ class GuiSD:
|
|
560 |
params_ip_mode.append(modeip)
|
561 |
params_ip_scale.append(scaleip)
|
562 |
|
563 |
-
model_precision = torch.float16 if "flux" not in model_name.lower() else torch.bfloat16
|
564 |
-
|
565 |
-
# First load
|
566 |
-
if not self.model:
|
567 |
-
print("Loading model...")
|
568 |
-
self.model = Model_Diffusers(
|
569 |
-
base_model_id=model_name,
|
570 |
-
task_name=task,
|
571 |
-
vae_model=vae_model if vae_model != "None" else None,
|
572 |
-
type_model_precision=model_precision,
|
573 |
-
retain_task_model_in_cache=retain_task_cache_gui,
|
574 |
-
)
|
575 |
self.model.stream_config(concurrency=5, latent_resize_by=1, vae_decoding=False)
|
576 |
|
577 |
if task != "txt2img" and not image_control:
|
@@ -580,62 +574,47 @@ class GuiSD:
|
|
580 |
if task == "inpaint" and not image_mask:
|
581 |
raise ValueError("No mask image found: Specify one in 'Image Mask'")
|
582 |
|
583 |
-
if upscaler_model_path in
|
584 |
upscaler_model = upscaler_model_path
|
585 |
else:
|
586 |
directory_upscalers = 'upscalers'
|
587 |
os.makedirs(directory_upscalers, exist_ok=True)
|
588 |
|
589 |
-
url_upscaler =
|
590 |
|
591 |
if not os.path.exists(f"./upscalers/{url_upscaler.split('/')[-1]}"):
|
592 |
-
download_things(directory_upscalers, url_upscaler,
|
593 |
|
594 |
upscaler_model = f"./upscalers/{url_upscaler.split('/')[-1]}"
|
595 |
|
596 |
logging.getLogger("ultralytics").setLevel(logging.INFO if adetailer_verbose else logging.ERROR)
|
597 |
|
598 |
-
print("Config model:", model_name, vae_model, loras_list)
|
599 |
-
|
600 |
-
self.model.load_pipe(
|
601 |
-
model_name,
|
602 |
-
task_name=task,
|
603 |
-
vae_model=vae_model if vae_model != "None" else None,
|
604 |
-
type_model_precision=model_precision,
|
605 |
-
retain_task_model_in_cache=retain_task_cache_gui,
|
606 |
-
)
|
607 |
-
|
608 |
-
## BEGIN MOD
|
609 |
-
# if textual_inversion and self.model.class_name == "StableDiffusionXLPipeline":
|
610 |
-
# print("No Textual inversion for SDXL")
|
611 |
-
## END MOD
|
612 |
-
|
613 |
adetailer_params_A = {
|
614 |
-
"face_detector_ad"
|
615 |
-
"person_detector_ad"
|
616 |
-
"hand_detector_ad"
|
617 |
"prompt": prompt_ad_a,
|
618 |
-
"negative_prompt"
|
619 |
-
"strength"
|
620 |
# "image_list_task" : None,
|
621 |
-
"mask_dilation"
|
622 |
-
"mask_blur"
|
623 |
-
"mask_padding"
|
624 |
-
"inpaint_only"
|
625 |
-
"sampler"
|
626 |
}
|
627 |
|
628 |
adetailer_params_B = {
|
629 |
-
"face_detector_ad"
|
630 |
-
"person_detector_ad"
|
631 |
-
"hand_detector_ad"
|
632 |
"prompt": prompt_ad_b,
|
633 |
-
"negative_prompt"
|
634 |
-
"strength"
|
635 |
# "image_list_task" : None,
|
636 |
-
"mask_dilation"
|
637 |
-
"mask_blur"
|
638 |
-
"mask_padding"
|
639 |
}
|
640 |
pipe_params = {
|
641 |
"prompt": prompt,
|
@@ -748,6 +727,40 @@ class GuiSD:
|
|
748 |
|
749 |
yield img, info_state
|
750 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
751 |
sd_gen = GuiSD()
|
752 |
|
753 |
## BEGIN MOD
|
@@ -759,27 +772,7 @@ CSS ="""
|
|
759 |
.lora { min-width:480px; !important; }
|
760 |
#model-info { text-align:center; }
|
761 |
"""
|
762 |
-
## END MOD
|
763 |
|
764 |
-
sdxl_task = [k for k, v in task_stablepy.items() if v in SDXL_TASKS ]
|
765 |
-
sd_task = [k for k, v in task_stablepy.items() if v in SD15_TASKS ]
|
766 |
-
def update_task_options(model_name, task_name):
|
767 |
-
if model_name in model_list:
|
768 |
-
if "xl" in model_name.lower() or "pony" in model_name.lower():
|
769 |
-
new_choices = sdxl_task
|
770 |
-
else:
|
771 |
-
new_choices = sd_task
|
772 |
-
|
773 |
-
if task_name not in new_choices:
|
774 |
-
task_name = "txt2img"
|
775 |
-
|
776 |
-
return gr.update(value=task_name, choices=new_choices)
|
777 |
-
else:
|
778 |
-
return gr.update(value=task_name, choices=task_model_list)
|
779 |
-
|
780 |
-
POST_PROCESSING_SAMPLER = ["Use same sampler"] + scheduler_names[:-2]
|
781 |
-
|
782 |
-
## BEGIN MOD
|
783 |
with gr.Blocks(theme='NoCrypt/miku@>=1.2.2', elem_id="main", fill_width=True, css=CSS, delete_cache=(60, 3600)) as app:
|
784 |
gr.Markdown("# 🧩 DiffuseCraft Mod")
|
785 |
gr.Markdown(
|
@@ -793,7 +786,7 @@ with gr.Blocks(theme='NoCrypt/miku@>=1.2.2', elem_id="main", fill_width=True, cs
|
|
793 |
with gr.Column(scale=2):
|
794 |
interface_mode_gui = gr.Radio(label="Quick settings", choices=["Simple", "Standard", "Fast", "LoRA"], value="Standard")
|
795 |
with gr.Accordion("Model and Task", open=False) as menu_model:
|
796 |
-
task_gui = gr.Dropdown(label="Task", choices=
|
797 |
with gr.Group():
|
798 |
model_name_gui = gr.Dropdown(label="Model", info="You can enter a huggingface model repo_id to want to use.", choices=get_tupled_model_list(model_list), value="votepurchase/animagine-xl-3.1", allow_custom_value=True)
|
799 |
model_info_gui = gr.Markdown(elem_id="model-info")
|
@@ -1036,7 +1029,7 @@ with gr.Blocks(theme='NoCrypt/miku@>=1.2.2', elem_id="main", fill_width=True, cs
|
|
1036 |
|
1037 |
with gr.Column() as menu_advanced:
|
1038 |
with gr.Accordion("Hires fix", open=False, visible=True) as menu_hires:
|
1039 |
-
upscaler_model_path_gui = gr.Dropdown(label="Upscaler", choices=
|
1040 |
with gr.Row():
|
1041 |
upscaler_increases_size_gui = gr.Slider(minimum=1.1, maximum=6., step=0.1, value=1.0, label="Upscale by")
|
1042 |
esrgan_tile_gui = gr.Slider(minimum=0, value=100, maximum=500, step=1, label="ESRGAN Tile")
|
@@ -1108,21 +1101,21 @@ with gr.Blocks(theme='NoCrypt/miku@>=1.2.2', elem_id="main", fill_width=True, cs
|
|
1108 |
info="This option adjusts the level of changes for img2img and inpainting."
|
1109 |
)
|
1110 |
image_resolution_gui = gr.Slider(minimum=64, maximum=2048, step=64, value=1024, label="Image Resolution")
|
1111 |
-
preprocessor_name_gui = gr.Dropdown(label="Preprocessor Name", choices=
|
1112 |
-
|
1113 |
-
|
1114 |
-
|
1115 |
-
|
1116 |
-
|
1117 |
-
|
1118 |
-
|
1119 |
-
|
1120 |
-
|
1121 |
-
|
1122 |
-
|
1123 |
-
|
1124 |
-
|
1125 |
-
|
1126 |
with gr.Row():
|
1127 |
preprocess_resolution_gui = gr.Slider(minimum=64, maximum=2048, step=64, value=512, label="Preprocess Resolution")
|
1128 |
low_threshold_gui = gr.Slider(minimum=1, maximum=255, step=1, value=100, label="Canny low threshold")
|
@@ -1166,7 +1159,7 @@ with gr.Blocks(theme='NoCrypt/miku@>=1.2.2', elem_id="main", fill_width=True, cs
|
|
1166 |
|
1167 |
try:
|
1168 |
style_names_found = sd_gen.model.STYLE_NAMES
|
1169 |
-
except:
|
1170 |
style_names_found = STYLE_NAMES
|
1171 |
|
1172 |
style_prompt_gui = gr.Dropdown(
|
@@ -1293,7 +1286,7 @@ with gr.Blocks(theme='NoCrypt/miku@>=1.2.2', elem_id="main", fill_width=True, cs
|
|
1293 |
img_width_gui,
|
1294 |
model_name_gui,
|
1295 |
],
|
1296 |
-
outputs=[result_images],
|
1297 |
cache_examples=False,
|
1298 |
#elem_id="examples",
|
1299 |
)
|
|
|
2 |
import gradio as gr
|
3 |
import os
|
4 |
from stablepy import Model_Diffusers
|
|
|
5 |
from stablepy.diffusers_vanilla.style_prompt_config import STYLE_NAMES
|
6 |
+
from stablepy.diffusers_vanilla.constants import FLUX_CN_UNION_MODES
|
7 |
import torch
|
8 |
import re
|
9 |
+
from huggingface_hub import HfApi
|
|
|
10 |
from stablepy import (
|
11 |
CONTROLNET_MODEL_IDS,
|
12 |
VALID_TASKS,
|
|
|
22 |
SD15_TASKS,
|
23 |
SDXL_TASKS,
|
24 |
)
|
25 |
+
#import urllib.parse
|
26 |
|
27 |
+
PREPROCESSOR_CONTROLNET = {
|
28 |
"openpose": [
|
29 |
"Openpose",
|
30 |
"None",
|
|
|
96 |
],
|
97 |
}
|
98 |
|
99 |
+
TASK_STABLEPY = {
|
100 |
'txt2img': 'txt2img',
|
101 |
'img2img': 'img2img',
|
102 |
'inpaint': 'inpaint',
|
|
|
122 |
'tile ControlNet': 'tile',
|
123 |
}
|
124 |
|
125 |
+
TASK_MODEL_LIST = list(TASK_STABLEPY.keys())
|
126 |
|
127 |
+
UPSCALER_DICT_GUI = {
|
128 |
+
None: None,
|
129 |
+
"Lanczos": "Lanczos",
|
130 |
+
"Nearest": "Nearest",
|
131 |
+
'Latent': 'Latent',
|
132 |
+
'Latent (antialiased)': 'Latent (antialiased)',
|
133 |
+
'Latent (bicubic)': 'Latent (bicubic)',
|
134 |
+
'Latent (bicubic antialiased)': 'Latent (bicubic antialiased)',
|
135 |
+
'Latent (nearest)': 'Latent (nearest)',
|
136 |
+
'Latent (nearest-exact)': 'Latent (nearest-exact)',
|
137 |
+
"RealESRGAN_x4plus": "https://github.com/xinntao/Real-ESRGAN/releases/download/v0.1.0/RealESRGAN_x4plus.pth",
|
138 |
+
"RealESRNet_x4plus": "https://github.com/xinntao/Real-ESRGAN/releases/download/v0.1.1/RealESRNet_x4plus.pth",
|
139 |
+
"RealESRGAN_x4plus_anime_6B": "https://github.com/xinntao/Real-ESRGAN/releases/download/v0.2.2.4/RealESRGAN_x4plus_anime_6B.pth",
|
140 |
+
"RealESRGAN_x2plus": "https://github.com/xinntao/Real-ESRGAN/releases/download/v0.2.1/RealESRGAN_x2plus.pth",
|
141 |
+
"realesr-animevideov3": "https://github.com/xinntao/Real-ESRGAN/releases/download/v0.2.5.0/realesr-animevideov3.pth",
|
142 |
+
"realesr-general-x4v3": "https://github.com/xinntao/Real-ESRGAN/releases/download/v0.2.5.0/realesr-general-x4v3.pth",
|
143 |
+
"realesr-general-wdn-x4v3": "https://github.com/xinntao/Real-ESRGAN/releases/download/v0.2.5.0/realesr-general-wdn-x4v3.pth",
|
144 |
+
"4x-UltraSharp": "https://huggingface.co/Shandypur/ESRGAN-4x-UltraSharp/resolve/main/4x-UltraSharp.pth",
|
145 |
+
"4x_foolhardy_Remacri": "https://huggingface.co/FacehugmanIII/4x_foolhardy_Remacri/resolve/main/4x_foolhardy_Remacri.pth",
|
146 |
+
"Remacri4xExtraSmoother": "https://huggingface.co/hollowstrawberry/upscalers-backup/resolve/main/ESRGAN/Remacri%204x%20ExtraSmoother.pth",
|
147 |
+
"AnimeSharp4x": "https://huggingface.co/hollowstrawberry/upscalers-backup/resolve/main/ESRGAN/AnimeSharp%204x.pth",
|
148 |
+
"lollypop": "https://huggingface.co/hollowstrawberry/upscalers-backup/resolve/main/ESRGAN/lollypop.pth",
|
149 |
+
"RealisticRescaler4x": "https://huggingface.co/hollowstrawberry/upscalers-backup/resolve/main/ESRGAN/RealisticRescaler%204x.pth",
|
150 |
+
"NickelbackFS4x": "https://huggingface.co/hollowstrawberry/upscalers-backup/resolve/main/ESRGAN/NickelbackFS%204x.pth"
|
151 |
+
}
|
152 |
+
|
153 |
+
UPSCALER_KEYS = list(UPSCALER_DICT_GUI.keys())
|
154 |
|
155 |
def download_things(directory, url, hf_token="", civitai_api_key=""):
|
156 |
url = url.strip()
|
|
|
181 |
else:
|
182 |
os.system(f"aria2c --console-log-level=error --summary-interval=10 -c -x 16 -k 1M -s 16 -d {directory} {url}")
|
183 |
|
|
|
184 |
def get_model_list(directory_path):
|
185 |
model_list = []
|
186 |
valid_extensions = {'.ckpt', '.pt', '.pth', '.safetensors', '.bin'}
|
187 |
|
188 |
for filename in os.listdir(directory_path):
|
189 |
if os.path.splitext(filename)[1] in valid_extensions:
|
190 |
+
# name_without_extension = os.path.splitext(filename)[0]
|
191 |
file_path = os.path.join(directory_path, filename)
|
192 |
# model_list.append((name_without_extension, file_path))
|
193 |
model_list.append(file_path)
|
194 |
print('\033[34mFILE: ' + file_path + '\033[0m')
|
195 |
return model_list
|
196 |
|
|
|
197 |
## BEGIN MOD
|
198 |
from modutils import (list_uniq, download_private_repo, get_model_id_list, get_tupled_embed_list,
|
199 |
get_lora_model_list, get_all_lora_tupled_list, update_loras, apply_lora_prompt, set_prompt_loras,
|
|
|
202 |
get_tupled_model_list, save_gallery_images, set_optimization, set_sampler_settings,
|
203 |
set_quick_presets, process_style_prompt, optimization_list, save_images,
|
204 |
preset_styles, preset_quality, preset_sampler_setting, translate_to_en)
|
205 |
+
from env import (HF_TOKEN, CIVITAI_API_KEY, HF_LORA_ESSENTIAL_PRIVATE_REPO, HF_VAE_PRIVATE_REPO,
|
206 |
HF_SDXL_EMBEDS_NEGATIVE_PRIVATE_REPO, HF_SDXL_EMBEDS_POSITIVE_PRIVATE_REPO,
|
207 |
directory_models, directory_loras, directory_vaes, directory_embeds, directory_embeds_sdxl,
|
208 |
directory_embeds_positive_sdxl, load_diffusers_format_model,
|
|
|
224 |
# Download stuffs
|
225 |
for url in [url.strip() for url in download_model.split(',')]:
|
226 |
if not os.path.exists(f"./models/{url.split('/')[-1]}"):
|
227 |
+
download_things(directory_models, url, HF_TOKEN, CIVITAI_API_KEY)
|
228 |
for url in [url.strip() for url in download_vae.split(',')]:
|
229 |
if not os.path.exists(f"./vaes/{url.split('/')[-1]}"):
|
230 |
+
download_things(directory_vaes, url, HF_TOKEN, CIVITAI_API_KEY)
|
231 |
for url in [url.strip() for url in download_lora.split(',')]:
|
232 |
if not os.path.exists(f"./loras/{url.split('/')[-1]}"):
|
233 |
+
download_things(directory_loras, url, HF_TOKEN, CIVITAI_API_KEY)
|
234 |
|
235 |
# Download Embeddings
|
236 |
for url_embed in download_embeds:
|
237 |
if not os.path.exists(f"./embedings/{url_embed.split('/')[-1]}"):
|
238 |
+
download_things(directory_embeds, url_embed, HF_TOKEN, CIVITAI_API_KEY)
|
239 |
|
240 |
# Build list models
|
241 |
embed_list = get_model_list(directory_embeds)
|
|
|
256 |
|
257 |
print('\033[33m🏁 Download and listing of valid models completed.\033[0m')
|
258 |
|
259 |
+
|
260 |
+
#######################
|
261 |
+
# GUI
|
262 |
+
#######################
|
263 |
+
import gradio as gr
|
264 |
+
import logging
|
265 |
+
logging.getLogger("diffusers").setLevel(logging.ERROR)
|
266 |
+
import diffusers
|
267 |
+
diffusers.utils.logging.set_verbosity(40)
|
268 |
+
import warnings
|
269 |
+
warnings.filterwarnings(action="ignore", category=FutureWarning, module="diffusers")
|
270 |
+
warnings.filterwarnings(action="ignore", category=UserWarning, module="diffusers")
|
271 |
+
warnings.filterwarnings(action="ignore", category=FutureWarning, module="transformers")
|
272 |
+
## BEGIN MOD
|
273 |
+
from stablepy import logger
|
274 |
+
logger.setLevel(logging.CRITICAL)
|
275 |
+
|
276 |
+
from v2 import V2_ALL_MODELS, v2_random_prompt, v2_upsampling_prompt
|
277 |
+
from utils import (gradio_copy_text, COPY_ACTION_JS, gradio_copy_prompt,
|
278 |
+
V2_ASPECT_RATIO_OPTIONS, V2_RATING_OPTIONS, V2_LENGTH_OPTIONS, V2_IDENTITY_OPTIONS)
|
279 |
+
from tagger import (predict_tags_wd, convert_danbooru_to_e621_prompt,
|
280 |
+
remove_specific_prompt, insert_recom_prompt, insert_model_recom_prompt,
|
281 |
+
compose_prompt_to_copy, translate_prompt, select_random_character)
|
282 |
+
def description_ui():
|
283 |
+
gr.Markdown(
|
284 |
+
"""
|
285 |
+
## Danbooru Tags Transformer V2 Demo with WD Tagger
|
286 |
+
(Image =>) Prompt => Upsampled longer prompt
|
287 |
+
- Mod of p1atdev's [Danbooru Tags Transformer V2 Demo](https://huggingface.co/spaces/p1atdev/danbooru-tags-transformer-v2) and [WD Tagger with 🤗 transformers](https://huggingface.co/spaces/p1atdev/wd-tagger-transformers).
|
288 |
+
- Models: p1atdev's [wd-swinv2-tagger-v3-hf](https://huggingface.co/p1atdev/wd-swinv2-tagger-v3-hf), [dart-v2-moe-sft](https://huggingface.co/p1atdev/dart-v2-moe-sft)
|
289 |
+
"""
|
290 |
+
)
|
291 |
+
## END MOD
|
292 |
+
|
293 |
+
msg_inc_vae = (
|
294 |
+
"Use the right VAE for your model to maintain image quality. The wrong"
|
295 |
+
" VAE can lead to poor results, like blurriness in the generated images."
|
296 |
+
)
|
297 |
+
|
298 |
+
SDXL_TASK = [k for k, v in TASK_STABLEPY.items() if v in SDXL_TASKS]
|
299 |
+
SD_TASK = [k for k, v in TASK_STABLEPY.items() if v in SD15_TASKS]
|
300 |
+
FLUX_TASK = list(TASK_STABLEPY.keys())[:3] + [k for k, v in TASK_STABLEPY.items() if v in FLUX_CN_UNION_MODES.keys()]
|
301 |
+
|
302 |
+
MODEL_TYPE_TASK = {
|
303 |
+
"SD 1.5": SD_TASK,
|
304 |
+
"SDXL": SDXL_TASK,
|
305 |
+
"FLUX": FLUX_TASK,
|
306 |
}
|
307 |
|
308 |
+
MODEL_TYPE_CLASS = {
|
309 |
+
"diffusers:StableDiffusionPipeline": "SD 1.5",
|
310 |
+
"diffusers:StableDiffusionXLPipeline": "SDXL",
|
311 |
+
"diffusers:FluxPipeline": "FLUX",
|
312 |
+
}
|
313 |
+
|
314 |
+
POST_PROCESSING_SAMPLER = ["Use same sampler"] + scheduler_names[:-2]
|
315 |
+
|
316 |
+
SUBTITLE_GUI = (
|
317 |
+
"### This demo uses [diffusers](https://github.com/huggingface/diffusers)"
|
318 |
+
" to perform different tasks in image generation."
|
319 |
+
)
|
320 |
|
321 |
def extract_parameters(input_string):
|
322 |
parameters = {}
|
323 |
input_string = input_string.replace("\n", "")
|
324 |
|
325 |
+
if "Negative prompt:" not in input_string:
|
326 |
print("Negative prompt not detected")
|
327 |
parameters["prompt"] = input_string
|
328 |
return parameters
|
329 |
|
330 |
parm = input_string.split("Negative prompt:")
|
331 |
parameters["prompt"] = parm[0]
|
332 |
+
if "Steps:" not in parm[1]:
|
333 |
print("Steps not detected")
|
334 |
parameters["neg_prompt"] = parm[1]
|
335 |
return parameters
|
|
|
357 |
|
358 |
return parameters
|
359 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
360 |
def info_html(json_data, title, subtitle):
|
361 |
return f"""
|
362 |
<div style='padding: 0; border-radius: 10px;'>
|
|
|
368 |
</div>
|
369 |
"""
|
370 |
|
371 |
+
def get_model_type(repo_id: str):
|
372 |
+
api = HfApi(token=os.environ.get("HF_TOKEN")) # if use private or gated model
|
373 |
+
default = "SD 1.5"
|
374 |
+
try:
|
375 |
+
model = api.model_info(repo_id=repo_id, timeout=5.0)
|
376 |
+
tags = model.tags
|
377 |
+
for tag in tags:
|
378 |
+
if tag in MODEL_TYPE_CLASS.keys(): return MODEL_TYPE_CLASS.get(tag, default)
|
379 |
+
except Exception:
|
380 |
+
return default
|
381 |
+
return default
|
382 |
+
|
383 |
class GuiSD:
|
384 |
def __init__(self):
|
385 |
self.model = None
|
|
|
399 |
yield f"Loading model: {model_name}"
|
400 |
|
401 |
vae_model = vae_model if vae_model != "None" else None
|
402 |
+
model_type = get_model_type(model_name)
|
403 |
|
404 |
+
if vae_model:
|
405 |
+
vae_type = "SDXL" if "sdxl" in vae_model.lower() else "SD 1.5"
|
406 |
+
if model_type != vae_type:
|
407 |
+
gr.Info(msg_inc_vae)
|
|
|
|
|
|
|
|
|
408 |
|
409 |
self.model.device = torch.device("cpu")
|
410 |
+
dtype_model = torch.bfloat16 if model_type == "FLUX" else torch.float16
|
411 |
|
412 |
self.model.load_pipe(
|
413 |
model_name,
|
414 |
+
task_name=TASK_STABLEPY[task],
|
415 |
vae_model=vae_model if vae_model != "None" else None,
|
416 |
+
type_model_precision=dtype_model,
|
417 |
retain_task_model_in_cache=False,
|
418 |
)
|
419 |
yield f"Model loaded: {model_name}"
|
|
|
533 |
vae_msg = f"VAE: {vae_model}" if vae_model else ""
|
534 |
msg_lora = []
|
535 |
|
536 |
+
print("Config model:", model_name, vae_model, loras_list)
|
537 |
+
|
538 |
## BEGIN MOD
|
539 |
global lora_model_list
|
540 |
lora_model_list = get_lora_model_list()
|
|
|
543 |
lora_scale3, lora4, lora_scale4, lora5, lora_scale5)
|
544 |
prompt, neg_prompt = insert_model_recom_prompt(prompt, neg_prompt, model_name)
|
545 |
## END MOD
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
546 |
|
547 |
+
task = TASK_STABLEPY[task]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
548 |
|
549 |
params_ip_img = []
|
550 |
params_ip_msk = []
|
|
|
566 |
params_ip_mode.append(modeip)
|
567 |
params_ip_scale.append(scaleip)
|
568 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
569 |
self.model.stream_config(concurrency=5, latent_resize_by=1, vae_decoding=False)
|
570 |
|
571 |
if task != "txt2img" and not image_control:
|
|
|
574 |
if task == "inpaint" and not image_mask:
|
575 |
raise ValueError("No mask image found: Specify one in 'Image Mask'")
|
576 |
|
577 |
+
if upscaler_model_path in UPSCALER_KEYS[:9]:
|
578 |
upscaler_model = upscaler_model_path
|
579 |
else:
|
580 |
directory_upscalers = 'upscalers'
|
581 |
os.makedirs(directory_upscalers, exist_ok=True)
|
582 |
|
583 |
+
url_upscaler = UPSCALER_DICT_GUI[upscaler_model_path]
|
584 |
|
585 |
if not os.path.exists(f"./upscalers/{url_upscaler.split('/')[-1]}"):
|
586 |
+
download_things(directory_upscalers, url_upscaler, HF_TOKEN)
|
587 |
|
588 |
upscaler_model = f"./upscalers/{url_upscaler.split('/')[-1]}"
|
589 |
|
590 |
logging.getLogger("ultralytics").setLevel(logging.INFO if adetailer_verbose else logging.ERROR)
|
591 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
592 |
adetailer_params_A = {
|
593 |
+
"face_detector_ad": face_detector_ad_a,
|
594 |
+
"person_detector_ad": person_detector_ad_a,
|
595 |
+
"hand_detector_ad": hand_detector_ad_a,
|
596 |
"prompt": prompt_ad_a,
|
597 |
+
"negative_prompt": negative_prompt_ad_a,
|
598 |
+
"strength": strength_ad_a,
|
599 |
# "image_list_task" : None,
|
600 |
+
"mask_dilation": mask_dilation_a,
|
601 |
+
"mask_blur": mask_blur_a,
|
602 |
+
"mask_padding": mask_padding_a,
|
603 |
+
"inpaint_only": adetailer_inpaint_only,
|
604 |
+
"sampler": adetailer_sampler,
|
605 |
}
|
606 |
|
607 |
adetailer_params_B = {
|
608 |
+
"face_detector_ad": face_detector_ad_b,
|
609 |
+
"person_detector_ad": person_detector_ad_b,
|
610 |
+
"hand_detector_ad": hand_detector_ad_b,
|
611 |
"prompt": prompt_ad_b,
|
612 |
+
"negative_prompt": negative_prompt_ad_b,
|
613 |
+
"strength": strength_ad_b,
|
614 |
# "image_list_task" : None,
|
615 |
+
"mask_dilation": mask_dilation_b,
|
616 |
+
"mask_blur": mask_blur_b,
|
617 |
+
"mask_padding": mask_padding_b,
|
618 |
}
|
619 |
pipe_params = {
|
620 |
"prompt": prompt,
|
|
|
727 |
|
728 |
yield img, info_state
|
729 |
|
730 |
+
def update_task_options(model_name, task_name):
|
731 |
+
new_choices = MODEL_TYPE_TASK[get_model_type(model_name)]
|
732 |
+
|
733 |
+
if task_name not in new_choices:
|
734 |
+
task_name = "txt2img"
|
735 |
+
|
736 |
+
return gr.update(value=task_name, choices=new_choices)
|
737 |
+
|
738 |
+
# def sd_gen_generate_pipeline(*args):
|
739 |
+
|
740 |
+
# # Load lora in CPU
|
741 |
+
# status_lora = sd_gen.model.lora_merge(
|
742 |
+
# lora_A=args[7] if args[7] != "None" else None, lora_scale_A=args[8],
|
743 |
+
# lora_B=args[9] if args[9] != "None" else None, lora_scale_B=args[10],
|
744 |
+
# lora_C=args[11] if args[11] != "None" else None, lora_scale_C=args[12],
|
745 |
+
# lora_D=args[13] if args[13] != "None" else None, lora_scale_D=args[14],
|
746 |
+
# lora_E=args[15] if args[15] != "None" else None, lora_scale_E=args[16],
|
747 |
+
# )
|
748 |
+
|
749 |
+
# lora_list = [args[7], args[9], args[11], args[13], args[15]]
|
750 |
+
# print(status_lora)
|
751 |
+
# for status, lora in zip(status_lora, lora_list):
|
752 |
+
# if status:
|
753 |
+
# gr.Info(f"LoRA loaded: {lora}")
|
754 |
+
# elif status is not None:
|
755 |
+
# gr.Warning(f"Failed to load LoRA: {lora}")
|
756 |
+
|
757 |
+
# # if status_lora == [None] * 5 and self.model.lora_memory != [None] * 5:
|
758 |
+
# # gr.Info(f"LoRAs in cache: {", ".join(str(x) for x in self.model.lora_memory if x is not None)}")
|
759 |
+
|
760 |
+
# yield from sd_gen.generate_pipeline(*args)
|
761 |
+
|
762 |
+
|
763 |
+
# sd_gen_generate_pipeline.zerogpu = True
|
764 |
sd_gen = GuiSD()
|
765 |
|
766 |
## BEGIN MOD
|
|
|
772 |
.lora { min-width:480px; !important; }
|
773 |
#model-info { text-align:center; }
|
774 |
"""
|
|
|
775 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
776 |
with gr.Blocks(theme='NoCrypt/miku@>=1.2.2', elem_id="main", fill_width=True, css=CSS, delete_cache=(60, 3600)) as app:
|
777 |
gr.Markdown("# 🧩 DiffuseCraft Mod")
|
778 |
gr.Markdown(
|
|
|
786 |
with gr.Column(scale=2):
|
787 |
interface_mode_gui = gr.Radio(label="Quick settings", choices=["Simple", "Standard", "Fast", "LoRA"], value="Standard")
|
788 |
with gr.Accordion("Model and Task", open=False) as menu_model:
|
789 |
+
task_gui = gr.Dropdown(label="Task", choices=SDXL_TASK, value=TASK_MODEL_LIST[0])
|
790 |
with gr.Group():
|
791 |
model_name_gui = gr.Dropdown(label="Model", info="You can enter a huggingface model repo_id to want to use.", choices=get_tupled_model_list(model_list), value="votepurchase/animagine-xl-3.1", allow_custom_value=True)
|
792 |
model_info_gui = gr.Markdown(elem_id="model-info")
|
|
|
1029 |
|
1030 |
with gr.Column() as menu_advanced:
|
1031 |
with gr.Accordion("Hires fix", open=False, visible=True) as menu_hires:
|
1032 |
+
upscaler_model_path_gui = gr.Dropdown(label="Upscaler", choices=UPSCALER_KEYS, value=UPSCALER_KEYS[0])
|
1033 |
with gr.Row():
|
1034 |
upscaler_increases_size_gui = gr.Slider(minimum=1.1, maximum=6., step=0.1, value=1.0, label="Upscale by")
|
1035 |
esrgan_tile_gui = gr.Slider(minimum=0, value=100, maximum=500, step=1, label="ESRGAN Tile")
|
|
|
1101 |
info="This option adjusts the level of changes for img2img and inpainting."
|
1102 |
)
|
1103 |
image_resolution_gui = gr.Slider(minimum=64, maximum=2048, step=64, value=1024, label="Image Resolution")
|
1104 |
+
preprocessor_name_gui = gr.Dropdown(label="Preprocessor Name", choices=PREPROCESSOR_CONTROLNET["canny"])
|
1105 |
+
|
1106 |
+
def change_preprocessor_choices(task):
|
1107 |
+
task = TASK_STABLEPY[task]
|
1108 |
+
if task in PREPROCESSOR_CONTROLNET.keys():
|
1109 |
+
choices_task = PREPROCESSOR_CONTROLNET[task]
|
1110 |
+
else:
|
1111 |
+
choices_task = PREPROCESSOR_CONTROLNET["canny"]
|
1112 |
+
return gr.update(choices=choices_task, value=choices_task[0])
|
1113 |
+
|
1114 |
+
task_gui.change(
|
1115 |
+
change_preprocessor_choices,
|
1116 |
+
[task_gui],
|
1117 |
+
[preprocessor_name_gui],
|
1118 |
+
)
|
1119 |
with gr.Row():
|
1120 |
preprocess_resolution_gui = gr.Slider(minimum=64, maximum=2048, step=64, value=512, label="Preprocess Resolution")
|
1121 |
low_threshold_gui = gr.Slider(minimum=1, maximum=255, step=1, value=100, label="Canny low threshold")
|
|
|
1159 |
|
1160 |
try:
|
1161 |
style_names_found = sd_gen.model.STYLE_NAMES
|
1162 |
+
except Exception:
|
1163 |
style_names_found = STYLE_NAMES
|
1164 |
|
1165 |
style_prompt_gui = gr.Dropdown(
|
|
|
1286 |
img_width_gui,
|
1287 |
model_name_gui,
|
1288 |
],
|
1289 |
+
outputs=[result_images, actual_task_info],
|
1290 |
cache_examples=False,
|
1291 |
#elem_id="examples",
|
1292 |
)
|
env.py
CHANGED
@@ -1,7 +1,7 @@
|
|
1 |
import os
|
2 |
|
3 |
CIVITAI_API_KEY = os.environ.get("CIVITAI_API_KEY")
|
4 |
-
|
5 |
hf_read_token = os.environ.get('HF_READ_TOKEN') # only use for private repo
|
6 |
|
7 |
# - **List Models**
|
|
|
1 |
import os
|
2 |
|
3 |
CIVITAI_API_KEY = os.environ.get("CIVITAI_API_KEY")
|
4 |
+
HF_TOKEN = os.environ.get("HF_TOKEN")
|
5 |
hf_read_token = os.environ.get('HF_READ_TOKEN') # only use for private repo
|
6 |
|
7 |
# - **List Models**
|
modutils.py
CHANGED
@@ -8,7 +8,7 @@ from pathlib import Path
|
|
8 |
|
9 |
from env import (HF_LORA_PRIVATE_REPOS1, HF_LORA_PRIVATE_REPOS2,
|
10 |
HF_MODEL_USER_EX, HF_MODEL_USER_LIKES,
|
11 |
-
directory_loras, hf_read_token,
|
12 |
|
13 |
|
14 |
def get_user_agent():
|
@@ -431,7 +431,7 @@ def download_lora(dl_urls: str):
|
|
431 |
for url in [url.strip() for url in dl_urls.split(',')]:
|
432 |
local_path = f"{directory_loras}/{url.split('/')[-1]}"
|
433 |
if not Path(local_path).exists():
|
434 |
-
download_things(directory_loras, url,
|
435 |
urls.append(url)
|
436 |
after = get_local_model_list(directory_loras)
|
437 |
new_files = list_sub(after, before)
|
@@ -693,7 +693,7 @@ def get_my_lora(link_url):
|
|
693 |
before = get_local_model_list(directory_loras)
|
694 |
for url in [url.strip() for url in link_url.split(',')]:
|
695 |
if not Path(f"{directory_loras}/{url.split('/')[-1]}").exists():
|
696 |
-
download_things(directory_loras, url,
|
697 |
after = get_local_model_list(directory_loras)
|
698 |
new_files = list_sub(after, before)
|
699 |
for file in new_files:
|
|
|
8 |
|
9 |
from env import (HF_LORA_PRIVATE_REPOS1, HF_LORA_PRIVATE_REPOS2,
|
10 |
HF_MODEL_USER_EX, HF_MODEL_USER_LIKES,
|
11 |
+
directory_loras, hf_read_token, HF_TOKEN, CIVITAI_API_KEY)
|
12 |
|
13 |
|
14 |
def get_user_agent():
|
|
|
431 |
for url in [url.strip() for url in dl_urls.split(',')]:
|
432 |
local_path = f"{directory_loras}/{url.split('/')[-1]}"
|
433 |
if not Path(local_path).exists():
|
434 |
+
download_things(directory_loras, url, HF_TOKEN, CIVITAI_API_KEY)
|
435 |
urls.append(url)
|
436 |
after = get_local_model_list(directory_loras)
|
437 |
new_files = list_sub(after, before)
|
|
|
693 |
before = get_local_model_list(directory_loras)
|
694 |
for url in [url.strip() for url in link_url.split(',')]:
|
695 |
if not Path(f"{directory_loras}/{url.split('/')[-1]}").exists():
|
696 |
+
download_things(directory_loras, url, HF_TOKEN, CIVITAI_API_KEY)
|
697 |
after = get_local_model_list(directory_loras)
|
698 |
new_files = list_sub(after, before)
|
699 |
for file in new_files:
|