John6666 commited on
Commit
b6715cb
·
verified ·
1 Parent(s): e78ecca

Upload 2 files

Browse files
Files changed (2) hide show
  1. app.py +8 -8
  2. modutils.py +2 -2
app.py CHANGED
@@ -399,7 +399,7 @@ class GuiSD:
399
  device="cpu",
400
  )
401
  self.model.load_beta_styles()
402
- #self.model.device = torch.device("cpu") #
403
 
404
  def load_new_model(self, model_name, vae_model, task, progress=gr.Progress(track_tqdm=True)):
405
 
@@ -646,15 +646,15 @@ class GuiSD:
646
  "high_threshold": high_threshold,
647
  "value_threshold": value_threshold,
648
  "distance_threshold": distance_threshold,
649
- "lora_A": lora1 if lora1 != "None" else None,
650
  "lora_scale_A": lora_scale1,
651
- "lora_B": lora2 if lora2 != "None" else None,
652
  "lora_scale_B": lora_scale2,
653
- "lora_C": lora3 if lora3 != "None" else None,
654
  "lora_scale_C": lora_scale3,
655
- "lora_D": lora4 if lora4 != "None" else None,
656
  "lora_scale_D": lora_scale4,
657
- "lora_E": lora5 if lora5 != "None" else None,
658
  "lora_scale_E": lora_scale5,
659
  ## BEGIN MOD
660
  "textual_inversion": get_embed_list(self.model.class_name) if textual_inversion else [],
@@ -704,7 +704,7 @@ class GuiSD:
704
  }
705
 
706
  self.model.device = torch.device("cuda:0")
707
- if hasattr(self.model.pipe, "transformer") and loras_list != ["None"] * 5:
708
  self.model.pipe.transformer.to(self.model.device)
709
  print("transformer to cuda")
710
 
@@ -1707,7 +1707,7 @@ with gr.Blocks(theme='NoCrypt/miku@>=1.2.2', elem_id="main", fill_width=True, cs
1707
  outputs=[result_images, actual_task_info],
1708
  queue=True,
1709
  show_progress="full",
1710
- ).success(save_gallery_images, [result_images], [result_images, result_images_files, result_images_files], queue=False, show_api=False)
1711
 
1712
  with gr.Tab("Danbooru Tags Transformer with WD Tagger", render=True):
1713
  with gr.Column(scale=2):
 
399
  device="cpu",
400
  )
401
  self.model.load_beta_styles()
402
+ self.model.device = torch.device("cpu") #
403
 
404
  def load_new_model(self, model_name, vae_model, task, progress=gr.Progress(track_tqdm=True)):
405
 
 
646
  "high_threshold": high_threshold,
647
  "value_threshold": value_threshold,
648
  "distance_threshold": distance_threshold,
649
+ "lora_A": lora1 if lora1 != "None" and lora1 != "" else None,
650
  "lora_scale_A": lora_scale1,
651
+ "lora_B": lora2 if lora2 != "None" and lora2 != "" else None,
652
  "lora_scale_B": lora_scale2,
653
+ "lora_C": lora3 if lora3 != "None" and lora3 != "" else None,
654
  "lora_scale_C": lora_scale3,
655
+ "lora_D": lora4 if lora4 != "None" and lora4 != "" else None,
656
  "lora_scale_D": lora_scale4,
657
+ "lora_E": lora5 if lora5 != "None" and lora5 != "" else None,
658
  "lora_scale_E": lora_scale5,
659
  ## BEGIN MOD
660
  "textual_inversion": get_embed_list(self.model.class_name) if textual_inversion else [],
 
704
  }
705
 
706
  self.model.device = torch.device("cuda:0")
707
+ if hasattr(self.model.pipe, "transformer") and loras_list != ["None"] * 5 and loras_list != [""] * 5:
708
  self.model.pipe.transformer.to(self.model.device)
709
  print("transformer to cuda")
710
 
 
1707
  outputs=[result_images, actual_task_info],
1708
  queue=True,
1709
  show_progress="full",
1710
+ ).success(save_gallery_images, [result_images], [result_images, result_images_files], queue=False, show_api=False)
1711
 
1712
  with gr.Tab("Danbooru Tags Transformer with WD Tagger", render=True):
1713
  with gr.Column(scale=2):
modutils.py CHANGED
@@ -136,7 +136,7 @@ def save_gallery_images(images, progress=gr.Progress(track_tqdm=True)):
136
  dt_now = datetime.now(timezone(timedelta(hours=9)))
137
  basename = dt_now.strftime('%Y%m%d_%H%M%S_')
138
  i = 1
139
- if not images: return images
140
  output_images = []
141
  output_paths = []
142
  for image in images:
@@ -153,7 +153,7 @@ def save_gallery_images(images, progress=gr.Progress(track_tqdm=True)):
153
  output_paths.append(str(newpath))
154
  output_images.append((str(newpath), str(filename)))
155
  progress(1, desc="Gallery updated.")
156
- return gr.update(value=output_images), gr.update(value=output_paths), gr.update(visible=True)
157
 
158
 
159
  def download_private_repo(repo_id, dir_path, is_replace):
 
136
  dt_now = datetime.now(timezone(timedelta(hours=9)))
137
  basename = dt_now.strftime('%Y%m%d_%H%M%S_')
138
  i = 1
139
+ if not images: return images, gr.update(visible=False)
140
  output_images = []
141
  output_paths = []
142
  for image in images:
 
153
  output_paths.append(str(newpath))
154
  output_images.append((str(newpath), str(filename)))
155
  progress(1, desc="Gallery updated.")
156
+ return gr.update(value=output_images), gr.update(value=output_paths, visible=True)
157
 
158
 
159
  def download_private_repo(repo_id, dir_path, is_replace):