File size: 8,784 Bytes
8f9f1c4
1cbe518
8f9f1c4
1cbe518
9028f7d
8490feb
 
 
 
2b41d09
8490feb
 
9028f7d
8490feb
2b41d09
8490feb
9028f7d
8490feb
 
9028f7d
 
 
 
 
 
bf8059b
8490feb
 
9028f7d
8490feb
 
1cbe518
8490feb
1cbe518
 
 
 
 
 
8490feb
1cbe518
8490feb
 
 
c164ddd
8490feb
1cbe518
8490feb
 
1cbe518
c164ddd
 
 
 
1cbe518
1a04b3b
8490feb
 
1cbe518
8490feb
 
9028f7d
1cbe518
8490feb
 
 
 
 
 
1cbe518
8490feb
1cbe518
8490feb
 
 
 
 
bf8059b
 
 
 
 
 
 
 
 
 
 
 
8490feb
 
9aa76d3
bf8059b
c164ddd
 
 
 
 
 
 
 
 
 
 
9028f7d
 
c164ddd
bf8059b
 
9028f7d
 
8490feb
bf8059b
d86313e
bf8059b
8490feb
bf8059b
 
8490feb
bf8059b
1cbe518
bf8059b
1cbe518
c164ddd
bf8059b
9028f7d
 
bf8059b
 
9028f7d
 
 
bf8059b
c164ddd
 
9028f7d
8490feb
9028f7d
 
8490feb
 
 
 
 
3910b1e
 
8490feb
1cbe518
 
 
9028f7d
8490feb
 
3910b1e
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
import gradio as gr
import os
from all_models import models
from externalmod import gr_Interface_load, save_image, randomize_seed
from prompt_extend import extend_prompt
import asyncio
from threading import RLock
lock = RLock()
HF_TOKEN = os.environ.get("HF_TOKEN") if os.environ.get("HF_TOKEN") else None # If private or gated models aren't used, ENV setting is unnecessary.

inference_timeout = 300
MAX_SEED = 2**32-1
current_model = models[0]
text_gen1 = extend_prompt

models2 = [gr_Interface_load(f"models/{m}", live=False, preprocess=True, postprocess=False, hf_token=HF_TOKEN) for m in models]

def text_it1(inputs, text_gen1=text_gen1):
        go_t1 = text_gen1(inputs)
        return(go_t1)

def set_model(current_model):
    current_model = models[current_model]
    return gr.update(label=(f"{current_model}"))

def send_it1(inputs, model_choice, neg_input, height, width, steps, cfg, seed):
        output1 = gen_fn(model_choice, inputs, neg_input, height, width, steps, cfg, seed)
        return (output1)

# https://huggingface.co/docs/api-inference/detailed_parameters
# https://huggingface.co/docs/huggingface_hub/package_reference/inference_client
async def infer(model_index, prompt, nprompt="", height=0, width=0, steps=0, cfg=0, seed=-1, timeout=inference_timeout):
    kwargs = {}
    if height > 0: kwargs["height"] = height
    if width > 0: kwargs["width"] = width
    if steps > 0: kwargs["num_inference_steps"] = steps
    if cfg > 0: cfg = kwargs["guidance_scale"] = cfg
    if seed == -1: kwargs["seed"] = randomize_seed()
    else: kwargs["seed"] = seed
    task = asyncio.create_task(asyncio.to_thread(models2[model_index].fn,
                               prompt=prompt, negative_prompt=nprompt, **kwargs, token=HF_TOKEN))
    await asyncio.sleep(0)
    try:
        result = await asyncio.wait_for(task, timeout=timeout)
    except asyncio.TimeoutError as e:
        print(e)
        print(f"Task timed out: {models[model_index]}")
        if not task.done(): task.cancel()
        result = None
        raise Exception(f"Task timed out: {models[model_index]}") from e
    except Exception as e:
        print(e)
        if not task.done(): task.cancel()
        result = None
        raise Exception() from e
    if task.done() and result is not None and not isinstance(result, tuple):
        with lock:
            png_path = "image.png"
            image = save_image(result, png_path, models[model_index], prompt, nprompt, height, width, steps, cfg, seed)
        return image
    return None

def gen_fn(model_index, prompt, nprompt="", height=0, width=0, steps=0, cfg=0, seed=-1):
    try:
        loop = asyncio.new_event_loop()
        result = loop.run_until_complete(infer(model_index, prompt, nprompt,
                                         height, width, steps, cfg, seed, inference_timeout))
    except (Exception, asyncio.CancelledError) as e:
        print(e)
        print(f"Task aborted: {models[model_index]}")
        result = None
        raise gr.Error(f"Task aborted: {models[model_index]}, Error: {e}")
    finally:
        loop.close()
    return result

css="""

.gradio-container {background-image: linear-gradient(#254150, #1e2f40, #182634) !important;

 color: #ffaa66 !important; font-family: 'IBM Plex Sans', sans-serif !important;}

h1 {font-size: 6em; color: #ffc99f; margin-top: 30px; margin-bottom: 30px;

 text-shadow: 3px 3px 0 rgba(0, 0, 0, 1) !important;}

h3 {color: #ffc99f; !important;}

h4 {display: inline-block; color: #ffffff !important;}

.wrapper img {font-size: 98% !important; white-space: nowrap !important; text-align: center !important;

display: inline-block !important; color: #ffffff !important;}

.wrapper {color: #ffffff !important;}

.gr-box {background-image: linear-gradient(#182634, #1e2f40, #254150) !important;

 border-top-color: #000000 !important; border-right-color: #ffffff !important;

 border-bottom-color: #ffffff !important; border-left-color: #000000 !important;}

"""

with gr.Blocks(theme='John6666/YntecDark', fill_width=True, css=css) as myface:
    gr.HTML(f"""

        <div style="text-align: center; max-width: 1200px; margin: 0 auto;">

        <div class="center"><h1>Blitz Diffusion</h1></div>

        <p style="margin-bottom: 1px; color: #ffaa66;">

        <h3>{int(len(models))} Stable Diffusion models, but why? For your enjoyment!</h3></p>

        <br><div class="wrapper">9.3 <img src="https://huggingface.co/Yntec/DucHaitenLofi/resolve/main/NEW.webp" alt="NEW!" style="width:32px;height:16px;">This has become a legacy backup copy of old <u><a href="https://huggingface.co/spaces/Yntec/ToyWorld">ToyWorld</a></u>'s UI! Newer models added dailty over there! 25 new models since last update!</div>

        <p style="margin-bottom: 1px; font-size: 98%">

        <br><h4>If a model is already loaded each new image takes less than <b>10</b> seconds to generate!</h4></p>

        <p style="margin-bottom: 1px; color: #ffffff;">

        <br><div class="wrapper">Generate 6 images from 1 prompt at the <u><a href="https://huggingface.co/spaces/Yntec/PrintingPress">PrintingPress</a></u>, and use 6 different models at <u><a href="https://huggingface.co/spaces/Yntec/diffusion80xx">Huggingface Diffusion!</a></u>!

        </p></p></div>

        """, elem_classes="gr-box")
    with gr.Row():
        with gr.Column(scale=100):
            # Model selection dropdown
            model_name1 = gr.Dropdown(label="Select Model", choices=[m for m in models], type="index",
                                      value=current_model, interactive=True, elem_classes=["gr-box", "gr-input"])
    with gr.Row():
        with gr.Column(scale=100):
            with gr.Group():
                magic1 = gr.Textbox(label="Your Prompt", lines=4, elem_classes=["gr-box", "gr-input"]) #Positive
                with gr.Accordion("Advanced", open=False, visible=True):
                    neg_input = gr.Textbox(label='Negative prompt', lines=1, elem_classes=["gr-box", "gr-input"])
                    with gr.Row():
                        width = gr.Slider(label="Width", info="If 0, the default value is used.", maximum=1216, step=32, value=0, elem_classes=["gr-box", "gr-input"])
                        height = gr.Slider(label="Height", info="If 0, the default value is used.", maximum=1216, step=32, value=0, elem_classes=["gr-box", "gr-input"])
                    with gr.Row():
                        steps = gr.Slider(label="Number of inference steps", info="If 0, the default value is used.", maximum=100, step=1, value=0, elem_classes=["gr-box", "gr-input"])
                        cfg = gr.Slider(label="Guidance scale", info="If 0, the default value is used.", maximum=30.0, step=0.1, value=-1, elem_classes=["gr-box", "gr-input"])
                        seed = gr.Slider(label="Seed", info="Randomize Seed if -1.", minimum=-1, maximum=MAX_SEED, step=1, value=-1, elem_classes=["gr-box", "gr-input"])
                        seed_rand = gr.Button("Randomize Seed 🎲", size="sm", variant="secondary")
            run = gr.Button("Generate Image", variant="primary", elem_classes="gr-button")

    with gr.Row():
        with gr.Column():
            output1 = gr.Image(label=(f"{current_model}"), show_download_button=True,
                               interactive=False, show_share_button=False, format=".png", elem_classes="gr-box")
                
    with gr.Row():
        with gr.Column(scale=50):
            input_text=gr.Textbox(label="Use this box to extend an idea automagically, by typing some words and clicking Extend Idea", lines=2, elem_classes=["gr-box", "gr-input"])
            see_prompts=gr.Button("Extend Idea -> overwrite the contents of the `Your Prompt´ box above", variant="primary", elem_classes="gr-button")
            use_short=gr.Button("Copy the contents of this box to the `Your Prompt´ box above", variant="primary", elem_classes="gr-button")
    def short_prompt(inputs):
        return (inputs)
    
    model_name1.change(set_model, inputs=model_name1, outputs=[output1])
    gr.on(
        triggers=[run.click, magic1.submit],
        fn=send_it1,
        inputs=[magic1, model_name1, neg_input, height, width, steps, cfg, seed],
        outputs=[output1],
        concurrency_limit=None,
        queue=False,
    )
    use_short.click(short_prompt, inputs=[input_text], outputs=magic1)
    see_prompts.click(text_it1, inputs=[input_text], outputs=magic1)
    seed_rand.click(randomize_seed, None, [seed], queue=False)
    
myface.queue(default_concurrency_limit=200, max_size=200)
myface.launch(show_api=False, max_threads=400)
# https://github.com/gradio-app/gradio/issues/6339