Delete convert_repo_to_safetensors.py
Browse files- convert_repo_to_safetensors.py +0 -366
convert_repo_to_safetensors.py
DELETED
@@ -1,366 +0,0 @@
|
|
1 |
-
# Script for converting a HF Diffusers saved pipeline to a Stable Diffusion checkpoint.
|
2 |
-
# *Only* converts the UNet, VAE, and Text Encoder.
|
3 |
-
# Does not convert optimizer state or any other thing.
|
4 |
-
|
5 |
-
import argparse
|
6 |
-
import os.path as osp
|
7 |
-
import re
|
8 |
-
|
9 |
-
import torch
|
10 |
-
from safetensors.torch import load_file, save_file
|
11 |
-
|
12 |
-
|
13 |
-
# =================#
|
14 |
-
# UNet Conversion #
|
15 |
-
# =================#
|
16 |
-
|
17 |
-
unet_conversion_map = [
|
18 |
-
# (stable-diffusion, HF Diffusers)
|
19 |
-
("time_embed.0.weight", "time_embedding.linear_1.weight"),
|
20 |
-
("time_embed.0.bias", "time_embedding.linear_1.bias"),
|
21 |
-
("time_embed.2.weight", "time_embedding.linear_2.weight"),
|
22 |
-
("time_embed.2.bias", "time_embedding.linear_2.bias"),
|
23 |
-
("input_blocks.0.0.weight", "conv_in.weight"),
|
24 |
-
("input_blocks.0.0.bias", "conv_in.bias"),
|
25 |
-
("out.0.weight", "conv_norm_out.weight"),
|
26 |
-
("out.0.bias", "conv_norm_out.bias"),
|
27 |
-
("out.2.weight", "conv_out.weight"),
|
28 |
-
("out.2.bias", "conv_out.bias"),
|
29 |
-
# the following are for sdxl
|
30 |
-
("label_emb.0.0.weight", "add_embedding.linear_1.weight"),
|
31 |
-
("label_emb.0.0.bias", "add_embedding.linear_1.bias"),
|
32 |
-
("label_emb.0.2.weight", "add_embedding.linear_2.weight"),
|
33 |
-
("label_emb.0.2.bias", "add_embedding.linear_2.bias"),
|
34 |
-
]
|
35 |
-
|
36 |
-
unet_conversion_map_resnet = [
|
37 |
-
# (stable-diffusion, HF Diffusers)
|
38 |
-
("in_layers.0", "norm1"),
|
39 |
-
("in_layers.2", "conv1"),
|
40 |
-
("out_layers.0", "norm2"),
|
41 |
-
("out_layers.3", "conv2"),
|
42 |
-
("emb_layers.1", "time_emb_proj"),
|
43 |
-
("skip_connection", "conv_shortcut"),
|
44 |
-
]
|
45 |
-
|
46 |
-
unet_conversion_map_layer = []
|
47 |
-
# hardcoded number of downblocks and resnets/attentions...
|
48 |
-
# would need smarter logic for other networks.
|
49 |
-
for i in range(3):
|
50 |
-
# loop over downblocks/upblocks
|
51 |
-
|
52 |
-
for j in range(2):
|
53 |
-
# loop over resnets/attentions for downblocks
|
54 |
-
hf_down_res_prefix = f"down_blocks.{i}.resnets.{j}."
|
55 |
-
sd_down_res_prefix = f"input_blocks.{3*i + j + 1}.0."
|
56 |
-
unet_conversion_map_layer.append((sd_down_res_prefix, hf_down_res_prefix))
|
57 |
-
|
58 |
-
if i > 0:
|
59 |
-
hf_down_atn_prefix = f"down_blocks.{i}.attentions.{j}."
|
60 |
-
sd_down_atn_prefix = f"input_blocks.{3*i + j + 1}.1."
|
61 |
-
unet_conversion_map_layer.append((sd_down_atn_prefix, hf_down_atn_prefix))
|
62 |
-
|
63 |
-
for j in range(4):
|
64 |
-
# loop over resnets/attentions for upblocks
|
65 |
-
hf_up_res_prefix = f"up_blocks.{i}.resnets.{j}."
|
66 |
-
sd_up_res_prefix = f"output_blocks.{3*i + j}.0."
|
67 |
-
unet_conversion_map_layer.append((sd_up_res_prefix, hf_up_res_prefix))
|
68 |
-
|
69 |
-
if i < 2:
|
70 |
-
# no attention layers in up_blocks.0
|
71 |
-
hf_up_atn_prefix = f"up_blocks.{i}.attentions.{j}."
|
72 |
-
sd_up_atn_prefix = f"output_blocks.{3 * i + j}.1."
|
73 |
-
unet_conversion_map_layer.append((sd_up_atn_prefix, hf_up_atn_prefix))
|
74 |
-
|
75 |
-
if i < 3:
|
76 |
-
# no downsample in down_blocks.3
|
77 |
-
hf_downsample_prefix = f"down_blocks.{i}.downsamplers.0.conv."
|
78 |
-
sd_downsample_prefix = f"input_blocks.{3*(i+1)}.0.op."
|
79 |
-
unet_conversion_map_layer.append((sd_downsample_prefix, hf_downsample_prefix))
|
80 |
-
|
81 |
-
# no upsample in up_blocks.3
|
82 |
-
hf_upsample_prefix = f"up_blocks.{i}.upsamplers.0."
|
83 |
-
sd_upsample_prefix = f"output_blocks.{3*i + 2}.{1 if i == 0 else 2}."
|
84 |
-
unet_conversion_map_layer.append((sd_upsample_prefix, hf_upsample_prefix))
|
85 |
-
unet_conversion_map_layer.append(("output_blocks.2.2.conv.", "output_blocks.2.1.conv."))
|
86 |
-
|
87 |
-
hf_mid_atn_prefix = "mid_block.attentions.0."
|
88 |
-
sd_mid_atn_prefix = "middle_block.1."
|
89 |
-
unet_conversion_map_layer.append((sd_mid_atn_prefix, hf_mid_atn_prefix))
|
90 |
-
for j in range(2):
|
91 |
-
hf_mid_res_prefix = f"mid_block.resnets.{j}."
|
92 |
-
sd_mid_res_prefix = f"middle_block.{2*j}."
|
93 |
-
unet_conversion_map_layer.append((sd_mid_res_prefix, hf_mid_res_prefix))
|
94 |
-
|
95 |
-
|
96 |
-
def convert_unet_state_dict(unet_state_dict):
|
97 |
-
# buyer beware: this is a *brittle* function,
|
98 |
-
# and correct output requires that all of these pieces interact in
|
99 |
-
# the exact order in which I have arranged them.
|
100 |
-
mapping = {k: k for k in unet_state_dict.keys()}
|
101 |
-
for sd_name, hf_name in unet_conversion_map:
|
102 |
-
mapping[hf_name] = sd_name
|
103 |
-
for k, v in mapping.items():
|
104 |
-
if "resnets" in k:
|
105 |
-
for sd_part, hf_part in unet_conversion_map_resnet:
|
106 |
-
v = v.replace(hf_part, sd_part)
|
107 |
-
mapping[k] = v
|
108 |
-
for k, v in mapping.items():
|
109 |
-
for sd_part, hf_part in unet_conversion_map_layer:
|
110 |
-
v = v.replace(hf_part, sd_part)
|
111 |
-
mapping[k] = v
|
112 |
-
new_state_dict = {sd_name: unet_state_dict[hf_name] for hf_name, sd_name in mapping.items()}
|
113 |
-
return new_state_dict
|
114 |
-
|
115 |
-
|
116 |
-
# ================#
|
117 |
-
# VAE Conversion #
|
118 |
-
# ================#
|
119 |
-
|
120 |
-
vae_conversion_map = [
|
121 |
-
# (stable-diffusion, HF Diffusers)
|
122 |
-
("nin_shortcut", "conv_shortcut"),
|
123 |
-
("norm_out", "conv_norm_out"),
|
124 |
-
("mid.attn_1.", "mid_block.attentions.0."),
|
125 |
-
]
|
126 |
-
|
127 |
-
for i in range(4):
|
128 |
-
# down_blocks have two resnets
|
129 |
-
for j in range(2):
|
130 |
-
hf_down_prefix = f"encoder.down_blocks.{i}.resnets.{j}."
|
131 |
-
sd_down_prefix = f"encoder.down.{i}.block.{j}."
|
132 |
-
vae_conversion_map.append((sd_down_prefix, hf_down_prefix))
|
133 |
-
|
134 |
-
if i < 3:
|
135 |
-
hf_downsample_prefix = f"down_blocks.{i}.downsamplers.0."
|
136 |
-
sd_downsample_prefix = f"down.{i}.downsample."
|
137 |
-
vae_conversion_map.append((sd_downsample_prefix, hf_downsample_prefix))
|
138 |
-
|
139 |
-
hf_upsample_prefix = f"up_blocks.{i}.upsamplers.0."
|
140 |
-
sd_upsample_prefix = f"up.{3-i}.upsample."
|
141 |
-
vae_conversion_map.append((sd_upsample_prefix, hf_upsample_prefix))
|
142 |
-
|
143 |
-
# up_blocks have three resnets
|
144 |
-
# also, up blocks in hf are numbered in reverse from sd
|
145 |
-
for j in range(3):
|
146 |
-
hf_up_prefix = f"decoder.up_blocks.{i}.resnets.{j}."
|
147 |
-
sd_up_prefix = f"decoder.up.{3-i}.block.{j}."
|
148 |
-
vae_conversion_map.append((sd_up_prefix, hf_up_prefix))
|
149 |
-
|
150 |
-
# this part accounts for mid blocks in both the encoder and the decoder
|
151 |
-
for i in range(2):
|
152 |
-
hf_mid_res_prefix = f"mid_block.resnets.{i}."
|
153 |
-
sd_mid_res_prefix = f"mid.block_{i+1}."
|
154 |
-
vae_conversion_map.append((sd_mid_res_prefix, hf_mid_res_prefix))
|
155 |
-
|
156 |
-
|
157 |
-
vae_conversion_map_attn = [
|
158 |
-
# (stable-diffusion, HF Diffusers)
|
159 |
-
("norm.", "group_norm."),
|
160 |
-
# the following are for SDXL
|
161 |
-
("q.", "to_q."),
|
162 |
-
("k.", "to_k."),
|
163 |
-
("v.", "to_v."),
|
164 |
-
("proj_out.", "to_out.0."),
|
165 |
-
]
|
166 |
-
|
167 |
-
|
168 |
-
def reshape_weight_for_sd(w):
|
169 |
-
# convert HF linear weights to SD conv2d weights
|
170 |
-
if not w.ndim == 1:
|
171 |
-
return w.reshape(*w.shape, 1, 1)
|
172 |
-
else:
|
173 |
-
return w
|
174 |
-
|
175 |
-
|
176 |
-
def convert_vae_state_dict(vae_state_dict):
|
177 |
-
mapping = {k: k for k in vae_state_dict.keys()}
|
178 |
-
for k, v in mapping.items():
|
179 |
-
for sd_part, hf_part in vae_conversion_map:
|
180 |
-
v = v.replace(hf_part, sd_part)
|
181 |
-
mapping[k] = v
|
182 |
-
for k, v in mapping.items():
|
183 |
-
if "attentions" in k:
|
184 |
-
for sd_part, hf_part in vae_conversion_map_attn:
|
185 |
-
v = v.replace(hf_part, sd_part)
|
186 |
-
mapping[k] = v
|
187 |
-
new_state_dict = {v: vae_state_dict[k] for k, v in mapping.items()}
|
188 |
-
weights_to_convert = ["q", "k", "v", "proj_out"]
|
189 |
-
for k, v in new_state_dict.items():
|
190 |
-
for weight_name in weights_to_convert:
|
191 |
-
if f"mid.attn_1.{weight_name}.weight" in k:
|
192 |
-
print(f"Reshaping {k} for SD format")
|
193 |
-
new_state_dict[k] = reshape_weight_for_sd(v)
|
194 |
-
return new_state_dict
|
195 |
-
|
196 |
-
|
197 |
-
# =========================#
|
198 |
-
# Text Encoder Conversion #
|
199 |
-
# =========================#
|
200 |
-
|
201 |
-
|
202 |
-
textenc_conversion_lst = [
|
203 |
-
# (stable-diffusion, HF Diffusers)
|
204 |
-
("transformer.resblocks.", "text_model.encoder.layers."),
|
205 |
-
("ln_1", "layer_norm1"),
|
206 |
-
("ln_2", "layer_norm2"),
|
207 |
-
(".c_fc.", ".fc1."),
|
208 |
-
(".c_proj.", ".fc2."),
|
209 |
-
(".attn", ".self_attn"),
|
210 |
-
("ln_final.", "text_model.final_layer_norm."),
|
211 |
-
("token_embedding.weight", "text_model.embeddings.token_embedding.weight"),
|
212 |
-
("positional_embedding", "text_model.embeddings.position_embedding.weight"),
|
213 |
-
]
|
214 |
-
protected = {re.escape(x[1]): x[0] for x in textenc_conversion_lst}
|
215 |
-
textenc_pattern = re.compile("|".join(protected.keys()))
|
216 |
-
|
217 |
-
# Ordering is from https://github.com/pytorch/pytorch/blob/master/test/cpp/api/modules.cpp
|
218 |
-
code2idx = {"q": 0, "k": 1, "v": 2}
|
219 |
-
|
220 |
-
|
221 |
-
def convert_openclip_text_enc_state_dict(text_enc_dict):
|
222 |
-
new_state_dict = {}
|
223 |
-
capture_qkv_weight = {}
|
224 |
-
capture_qkv_bias = {}
|
225 |
-
for k, v in text_enc_dict.items():
|
226 |
-
if (
|
227 |
-
k.endswith(".self_attn.q_proj.weight")
|
228 |
-
or k.endswith(".self_attn.k_proj.weight")
|
229 |
-
or k.endswith(".self_attn.v_proj.weight")
|
230 |
-
):
|
231 |
-
k_pre = k[: -len(".q_proj.weight")]
|
232 |
-
k_code = k[-len("q_proj.weight")]
|
233 |
-
if k_pre not in capture_qkv_weight:
|
234 |
-
capture_qkv_weight[k_pre] = [None, None, None]
|
235 |
-
capture_qkv_weight[k_pre][code2idx[k_code]] = v
|
236 |
-
continue
|
237 |
-
|
238 |
-
if (
|
239 |
-
k.endswith(".self_attn.q_proj.bias")
|
240 |
-
or k.endswith(".self_attn.k_proj.bias")
|
241 |
-
or k.endswith(".self_attn.v_proj.bias")
|
242 |
-
):
|
243 |
-
k_pre = k[: -len(".q_proj.bias")]
|
244 |
-
k_code = k[-len("q_proj.bias")]
|
245 |
-
if k_pre not in capture_qkv_bias:
|
246 |
-
capture_qkv_bias[k_pre] = [None, None, None]
|
247 |
-
capture_qkv_bias[k_pre][code2idx[k_code]] = v
|
248 |
-
continue
|
249 |
-
|
250 |
-
relabelled_key = textenc_pattern.sub(lambda m: protected[re.escape(m.group(0))], k)
|
251 |
-
new_state_dict[relabelled_key] = v
|
252 |
-
|
253 |
-
for k_pre, tensors in capture_qkv_weight.items():
|
254 |
-
if None in tensors:
|
255 |
-
raise Exception("CORRUPTED MODEL: one of the q-k-v values for the text encoder was missing")
|
256 |
-
relabelled_key = textenc_pattern.sub(lambda m: protected[re.escape(m.group(0))], k_pre)
|
257 |
-
new_state_dict[relabelled_key + ".in_proj_weight"] = torch.cat(tensors)
|
258 |
-
|
259 |
-
for k_pre, tensors in capture_qkv_bias.items():
|
260 |
-
if None in tensors:
|
261 |
-
raise Exception("CORRUPTED MODEL: one of the q-k-v values for the text encoder was missing")
|
262 |
-
relabelled_key = textenc_pattern.sub(lambda m: protected[re.escape(m.group(0))], k_pre)
|
263 |
-
new_state_dict[relabelled_key + ".in_proj_bias"] = torch.cat(tensors)
|
264 |
-
|
265 |
-
return new_state_dict
|
266 |
-
|
267 |
-
|
268 |
-
def convert_openai_text_enc_state_dict(text_enc_dict):
|
269 |
-
return text_enc_dict
|
270 |
-
|
271 |
-
|
272 |
-
def convert_diffusers_to_safetensors(model_path, checkpoint_path, half = True, use_safetensors = True):
|
273 |
-
# Path for safetensors
|
274 |
-
unet_path = osp.join(model_path, "unet", "diffusion_pytorch_model.safetensors")
|
275 |
-
vae_path = osp.join(model_path, "vae", "diffusion_pytorch_model.safetensors")
|
276 |
-
text_enc_path = osp.join(model_path, "text_encoder", "model.safetensors")
|
277 |
-
text_enc_2_path = osp.join(model_path, "text_encoder_2", "model.safetensors")
|
278 |
-
|
279 |
-
# Load models from safetensors if it exists, if it doesn't pytorch
|
280 |
-
if osp.exists(unet_path):
|
281 |
-
unet_state_dict = load_file(unet_path, device="cpu")
|
282 |
-
else:
|
283 |
-
unet_path = osp.join(model_path, "unet", "diffusion_pytorch_model.bin")
|
284 |
-
unet_state_dict = torch.load(unet_path, map_location="cpu")
|
285 |
-
|
286 |
-
if osp.exists(vae_path):
|
287 |
-
vae_state_dict = load_file(vae_path, device="cpu")
|
288 |
-
else:
|
289 |
-
vae_path = osp.join(model_path, "vae", "diffusion_pytorch_model.bin")
|
290 |
-
vae_state_dict = torch.load(vae_path, map_location="cpu")
|
291 |
-
|
292 |
-
if osp.exists(text_enc_path):
|
293 |
-
text_enc_dict = load_file(text_enc_path, device="cpu")
|
294 |
-
else:
|
295 |
-
text_enc_path = osp.join(model_path, "text_encoder", "pytorch_model.bin")
|
296 |
-
text_enc_dict = torch.load(text_enc_path, map_location="cpu")
|
297 |
-
|
298 |
-
if osp.exists(text_enc_2_path):
|
299 |
-
text_enc_2_dict = load_file(text_enc_2_path, device="cpu")
|
300 |
-
else:
|
301 |
-
text_enc_2_path = osp.join(model_path, "text_encoder_2", "pytorch_model.bin")
|
302 |
-
text_enc_2_dict = torch.load(text_enc_2_path, map_location="cpu")
|
303 |
-
|
304 |
-
# Convert the UNet model
|
305 |
-
unet_state_dict = convert_unet_state_dict(unet_state_dict)
|
306 |
-
unet_state_dict = {"model.diffusion_model." + k: v for k, v in unet_state_dict.items()}
|
307 |
-
|
308 |
-
# Convert the VAE model
|
309 |
-
vae_state_dict = convert_vae_state_dict(vae_state_dict)
|
310 |
-
vae_state_dict = {"first_stage_model." + k: v for k, v in vae_state_dict.items()}
|
311 |
-
|
312 |
-
# Convert text encoder 1
|
313 |
-
text_enc_dict = convert_openai_text_enc_state_dict(text_enc_dict)
|
314 |
-
text_enc_dict = {"conditioner.embedders.0.transformer." + k: v for k, v in text_enc_dict.items()}
|
315 |
-
|
316 |
-
# Convert text encoder 2
|
317 |
-
text_enc_2_dict = convert_openclip_text_enc_state_dict(text_enc_2_dict)
|
318 |
-
text_enc_2_dict = {"conditioner.embedders.1.model." + k: v for k, v in text_enc_2_dict.items()}
|
319 |
-
# We call the `.T.contiguous()` to match what's done in
|
320 |
-
# https://github.com/huggingface/diffusers/blob/84905ca7287876b925b6bf8e9bb92fec21c78764/src/diffusers/loaders/single_file_utils.py#L1085
|
321 |
-
text_enc_2_dict["conditioner.embedders.1.model.text_projection"] = text_enc_2_dict.pop(
|
322 |
-
"conditioner.embedders.1.model.text_projection.weight"
|
323 |
-
).T.contiguous()
|
324 |
-
|
325 |
-
# Put together new checkpoint
|
326 |
-
state_dict = {**unet_state_dict, **vae_state_dict, **text_enc_dict, **text_enc_2_dict}
|
327 |
-
|
328 |
-
if half:
|
329 |
-
state_dict = {k: v.half() for k, v in state_dict.items()}
|
330 |
-
|
331 |
-
if use_safetensors:
|
332 |
-
save_file(state_dict, checkpoint_path)
|
333 |
-
else:
|
334 |
-
state_dict = {"state_dict": state_dict}
|
335 |
-
torch.save(state_dict, checkpoint_path)
|
336 |
-
|
337 |
-
|
338 |
-
def download_repo(repo_id, dir_path):
|
339 |
-
from huggingface_hub import snapshot_download
|
340 |
-
try:
|
341 |
-
snapshot_download(repo_id=repo_id, local_dir=dir_path)
|
342 |
-
except Exception as e:
|
343 |
-
print(f"Error: Failed to download {repo_id}. ")
|
344 |
-
return
|
345 |
-
|
346 |
-
|
347 |
-
def convert_repo_to_safetensors(repo_id):
|
348 |
-
download_dir = f"{repo_id.split('/')[0]}_{repo_id.split('/')[-1]}"
|
349 |
-
output_filename = f"{repo_id.split('/')[0]}_{repo_id.split('/')[-1]}.safetensors"
|
350 |
-
download_repo(repo_id, download_dir)
|
351 |
-
convert_diffusers_to_safetensors(download_dir, output_filename)
|
352 |
-
return output_filename
|
353 |
-
|
354 |
-
|
355 |
-
if __name__ == "__main__":
|
356 |
-
parser = argparse.ArgumentParser()
|
357 |
-
|
358 |
-
parser.add_argument("--repo_id", default=None, type=str, required=True, help="HF Repo ID of the model to convert.")
|
359 |
-
|
360 |
-
args = parser.parse_args()
|
361 |
-
assert args.repo_id is not None, "Must provide a Repo ID!"
|
362 |
-
|
363 |
-
convert_repo_to_safetensors(args.repo_id)
|
364 |
-
|
365 |
-
|
366 |
-
# Usage: python convert_repo_to_safetensors.py --repo_id GraydientPlatformAPI/goodfit-pony41-xl
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|