Spaces:
Running
on
Zero
Running
on
Zero
import spaces | |
import gradio as gr | |
from huggingface_hub import InferenceClient | |
from torch import nn | |
from transformers import AutoModel, AutoProcessor, AutoTokenizer, PreTrainedTokenizer, PreTrainedTokenizerFast, AutoModelForCausalLM | |
from pathlib import Path | |
import torch | |
import torch.amp.autocast_mode | |
from PIL import Image | |
import os | |
import gc | |
device = "cuda" if torch.cuda.is_available() else "cpu" | |
llm_models = { | |
"Sao10K/Llama-3.1-8B-Stheno-v3.4": None, | |
"unsloth/Meta-Llama-3.1-8B-bnb-4bit": None, | |
"mergekit-community/L3.1-Boshima-b-FIX": None, | |
"meta-llama/Meta-Llama-3.1-8B": None, | |
} | |
CLIP_PATH = "google/siglip-so400m-patch14-384" | |
VLM_PROMPT = "A descriptive caption for this image:\n" | |
MODEL_PATH = list(llm_models.keys())[0] | |
CHECKPOINT_PATH = Path("wpkklhc6") | |
TITLE = "<h1><center>JoyCaption Pre-Alpha (2024-07-30a)</center></h1>" | |
HF_TOKEN = os.environ.get("HF_TOKEN", None) | |
use_inference_client = False | |
class ImageAdapter(nn.Module): | |
def __init__(self, input_features: int, output_features: int): | |
super().__init__() | |
self.linear1 = nn.Linear(input_features, output_features) | |
self.activation = nn.GELU() | |
self.linear2 = nn.Linear(output_features, output_features) | |
def forward(self, vision_outputs: torch.Tensor): | |
x = self.linear1(vision_outputs) | |
x = self.activation(x) | |
x = self.linear2(x) | |
return x | |
# https://huggingface.co/docs/transformers/v4.44.2/gguf | |
# https://github.com/city96/ComfyUI-GGUF/issues/7 | |
# https://github.com/THUDM/ChatGLM-6B/issues/18 | |
# https://github.com/meta-llama/llama/issues/394 | |
# https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct/discussions/109 | |
# https://huggingface.co/docs/transformers/main/en/main_classes/quantization#offload-between-cpu-and-gpu | |
# https://huggingface.co/google/flan-ul2/discussions/8 | |
# https://huggingface.co/blog/4bit-transformers-bitsandbytes | |
tokenizer = None | |
text_model_client = None | |
text_model = None | |
image_adapter = None | |
def load_text_model(model_name: str=MODEL_PATH, gguf_file: str | None=None, is_nf4: bool=True): | |
global tokenizer | |
global text_model | |
global image_adapter | |
global text_model_client # | |
global use_inference_client # | |
try: | |
from transformers import BitsAndBytesConfig | |
nf4_config = BitsAndBytesConfig(load_in_4bit=True, bnb_4bit_quant_type="nf4", | |
bnb_4bit_use_double_quant=True, bnb_4bit_compute_dtype=torch.bfloat16) | |
print("Loading tokenizer") | |
if gguf_file: tokenizer = AutoTokenizer.from_pretrained(model_name, gguf_file=gguf_file, use_fast=True, legacy=False) | |
else: tokenizer = AutoTokenizer.from_pretrained(model_name, use_fast=False, legacy=False) | |
assert isinstance(tokenizer, PreTrainedTokenizer) or isinstance(tokenizer, PreTrainedTokenizerFast), f"Tokenizer is of type {type(tokenizer)}" | |
print(f"Loading LLM: {model_name}") | |
if gguf_file: | |
if device == "cpu": text_model = AutoModelForCausalLM.from_pretrained(model_name, gguf_file=gguf_file, device_map=device, torch_dtype=torch.bfloat16).eval() | |
elif is_nf4: text_model = AutoModelForCausalLM.from_pretrained(model_name, quantization_config=nf4_config, device_map=device, torch_dtype=torch.bfloat16).eval() | |
else: text_model = AutoModelForCausalLM.from_pretrained(model_name, device_map=device, torch_dtype=torch.bfloat16).eval() | |
else: | |
if device == "cpu": text_model = AutoModelForCausalLM.from_pretrained(model_name, gguf_file=gguf_file, device_map=device, torch_dtype=torch.bfloat16).eval() | |
elif is_nf4: text_model = AutoModelForCausalLM.from_pretrained(model_name, quantization_config=nf4_config, device_map=device, torch_dtype=torch.bfloat16).eval() | |
else: text_model = AutoModelForCausalLM.from_pretrained(model_name, device_map=device, torch_dtype=torch.bfloat16).eval() | |
print("Loading image adapter") | |
image_adapter = ImageAdapter(clip_model.config.hidden_size, text_model.config.hidden_size).eval().to("cpu") | |
image_adapter.load_state_dict(torch.load(CHECKPOINT_PATH / "image_adapter.pt", map_location="cpu", weights_only=True)) | |
image_adapter.eval().to(device) | |
except Exception as e: | |
print(f"LLM load error: {e}") | |
raise Exception(f"LLM load error: {e}") from e | |
finally: | |
torch.cuda.empty_cache() | |
gc.collect() | |
load_text_model.zerogpu = True | |
# Load CLIP | |
print("Loading CLIP") | |
clip_processor = AutoProcessor.from_pretrained(CLIP_PATH) | |
clip_model = AutoModel.from_pretrained(CLIP_PATH).vision_model.eval().requires_grad_(False).to(device) | |
# Tokenizer | |
# LLM | |
# Image Adapter | |
load_text_model() | |
def stream_chat(input_image: Image.Image): | |
torch.cuda.empty_cache() | |
# Preprocess image | |
image = clip_processor(images=input_image, return_tensors='pt').pixel_values | |
image = image.to(device) | |
# Tokenize the prompt | |
prompt = tokenizer.encode(VLM_PROMPT, return_tensors='pt', padding=False, truncation=False, add_special_tokens=False) | |
# Embed image | |
with torch.amp.autocast_mode.autocast(device, enabled=True): | |
vision_outputs = clip_model(pixel_values=image, output_hidden_states=True) | |
image_features = vision_outputs.hidden_states[-2] | |
embedded_images = image_adapter(image_features) | |
embedded_images = embedded_images.to(device) | |
# Embed prompt | |
prompt_embeds = text_model.model.embed_tokens(prompt.to(device)) | |
assert prompt_embeds.shape == (1, prompt.shape[1], text_model.config.hidden_size), f"Prompt shape is {prompt_embeds.shape}, expected {(1, prompt.shape[1], text_model.config.hidden_size)}" | |
embedded_bos = text_model.model.embed_tokens(torch.tensor([[tokenizer.bos_token_id]], device=text_model.device, dtype=torch.int64)) | |
# Construct prompts | |
inputs_embeds = torch.cat([ | |
embedded_bos.expand(embedded_images.shape[0], -1, -1), | |
embedded_images.to(dtype=embedded_bos.dtype), | |
prompt_embeds.expand(embedded_images.shape[0], -1, -1), | |
], dim=1) | |
input_ids = torch.cat([ | |
torch.tensor([[tokenizer.bos_token_id]], dtype=torch.long), | |
torch.zeros((1, embedded_images.shape[1]), dtype=torch.long), | |
prompt, | |
], dim=1).to(device) | |
attention_mask = torch.ones_like(input_ids) | |
#generate_ids = text_model.generate(input_ids, inputs_embeds=inputs_embeds, attention_mask=attention_mask, max_new_tokens=300, do_sample=False, suppress_tokens=None) | |
generate_ids = text_model.generate(input_ids, inputs_embeds=inputs_embeds, attention_mask=attention_mask, max_new_tokens=300, do_sample=True, top_k=10, temperature=0.5, suppress_tokens=None) | |
# Trim off the prompt | |
generate_ids = generate_ids[:, input_ids.shape[1]:] | |
if generate_ids[0][-1] == tokenizer.eos_token_id: | |
generate_ids = generate_ids[:, :-1] | |
caption = tokenizer.batch_decode(generate_ids, skip_special_tokens=False, clean_up_tokenization_spaces=False)[0] | |
return caption.strip() | |
def stream_chat_mod(input_image: Image.Image, max_new_tokens: int=300, top_k: int=10, temperature: float=0.5, progress=gr.Progress(track_tqdm=True)): | |
global use_inference_client | |
global text_model | |
torch.cuda.empty_cache() | |
gc.collect() | |
# Preprocess image | |
image = clip_processor(images=input_image, return_tensors='pt').pixel_values | |
image = image.to(device) | |
# Tokenize the prompt | |
prompt = tokenizer.encode(VLM_PROMPT, return_tensors='pt', padding=False, truncation=False, add_special_tokens=False) | |
# Embed image | |
with torch.amp.autocast_mode.autocast(device, enabled=True): | |
vision_outputs = clip_model(pixel_values=image, output_hidden_states=True) | |
image_features = vision_outputs.hidden_states[-2] | |
embedded_images = image_adapter(image_features) | |
embedded_images = embedded_images.to(device) | |
# Embed prompt | |
prompt_embeds = text_model.model.embed_tokens(prompt.to(device)) | |
assert prompt_embeds.shape == (1, prompt.shape[1], text_model.config.hidden_size), f"Prompt shape is {prompt_embeds.shape}, expected {(1, prompt.shape[1], text_model.config.hidden_size)}" | |
embedded_bos = text_model.model.embed_tokens(torch.tensor([[tokenizer.bos_token_id]], device=text_model.device, dtype=torch.int64)) | |
# Construct prompts | |
inputs_embeds = torch.cat([ | |
embedded_bos.expand(embedded_images.shape[0], -1, -1), | |
embedded_images.to(dtype=embedded_bos.dtype), | |
prompt_embeds.expand(embedded_images.shape[0], -1, -1), | |
], dim=1) | |
input_ids = torch.cat([ | |
torch.tensor([[tokenizer.bos_token_id]], dtype=torch.long), | |
torch.zeros((1, embedded_images.shape[1]), dtype=torch.long), | |
prompt, | |
], dim=1).to(device) | |
attention_mask = torch.ones_like(input_ids) | |
# https://huggingface.co/docs/transformers/v4.44.2/main_classes/text_generation#transformers.FlaxGenerationMixin.generate | |
# https://github.com/huggingface/transformers/issues/6535 | |
# https://zenn.dev/hijikix/articles/8c445f4373fdcc ja | |
# https://github.com/ggerganov/llama.cpp/discussions/7712 | |
# https://huggingface.co/docs/huggingface_hub/guides/inference#openai-compatibility | |
# https://huggingface.co/docs/huggingface_hub/v0.24.6/en/package_reference/inference_client#huggingface_hub.InferenceClient.text_generation | |
#generate_ids = text_model.generate(input_ids, inputs_embeds=inputs_embeds, attention_mask=attention_mask, max_new_tokens=300, do_sample=False, suppress_tokens=None) | |
generate_ids = text_model.generate(input_ids, inputs_embeds=inputs_embeds, attention_mask=attention_mask, | |
max_new_tokens=max_new_tokens, do_sample=True, top_k=top_k, temperature=temperature, suppress_tokens=None) | |
print(prompt) | |
# Trim off the prompt | |
generate_ids = generate_ids[:, input_ids.shape[1]:] | |
if generate_ids[0][-1] == tokenizer.eos_token_id: | |
generate_ids = generate_ids[:, :-1] | |
caption = tokenizer.batch_decode(generate_ids, skip_special_tokens=False, clean_up_tokenization_spaces=False)[0] | |
return caption.strip() | |
def is_repo_name(s): | |
import re | |
return re.fullmatch(r'^[^/,\s\"\']+/[^/,\s\"\']+$', s) | |
def is_repo_exists(repo_id): | |
from huggingface_hub import HfApi | |
try: | |
api = HfApi(token=HF_TOKEN) | |
if api.repo_exists(repo_id=repo_id): return True | |
else: return False | |
except Exception as e: | |
print(f"Error: Failed to connect {repo_id}.") | |
print(e) | |
return True # for safe | |
def get_text_model(): | |
return list(llm_models.keys()) | |
def is_gguf_repo(repo_id: str): | |
from huggingface_hub import HfApi | |
try: | |
api = HfApi(token=HF_TOKEN) | |
if not is_repo_name(repo_id) or not is_repo_exists(repo_id): return False | |
files = api.list_repo_files(repo_id=repo_id) | |
except Exception as e: | |
print(f"Error: Failed to get {repo_id}'s info.") | |
print(e) | |
gr.Warning(f"Error: Failed to get {repo_id}'s info.") | |
return False | |
files = [f for f in files if f.endswith(".gguf")] | |
if len(files) == 0: return False | |
else: return True | |
def get_repo_gguf(repo_id: str): | |
from huggingface_hub import HfApi | |
try: | |
api = HfApi(token=HF_TOKEN) | |
if not is_repo_name(repo_id) or not is_repo_exists(repo_id): return gr.update(value="", choices=[]) | |
files = api.list_repo_files(repo_id=repo_id) | |
except Exception as e: | |
print(f"Error: Failed to get {repo_id}'s info.") | |
print(e) | |
gr.Warning(f"Error: Failed to get {repo_id}'s info.") | |
return gr.update(value="", choices=[]) | |
files = [f for f in files if f.endswith(".gguf")] | |
if len(files) == 0: return gr.update(value="", choices=[]) | |
else: return gr.update(value=files[0], choices=files) | |
def change_text_model(model_name: str=MODEL_PATH, use_client: bool=False, gguf_file: str | None=None, | |
is_nf4: bool=True, progress=gr.Progress(track_tqdm=True)): | |
global use_inference_client | |
global llm_models | |
use_inference_client = use_client | |
try: | |
if not is_repo_name(model_name) or not is_repo_exists(model_name): | |
raise gr.Error(f"Repo doesn't exist: {model_name}") | |
if not gguf_file and is_gguf_repo(model_name): | |
gr.Info(f"Please select a gguf file.") | |
return gr.update(visible=True) | |
if use_inference_client: | |
pass # | |
else: | |
load_text_model(model_name, gguf_file, is_nf4) | |
if model_name not in llm_models: llm_models[model_name] = gguf_file if gguf_file else None | |
return gr.update(choices=get_text_model()) | |
except Exception as e: | |
raise gr.Error(f"Model load error: {model_name}, {e}") | |
# original UI | |
with gr.Blocks() as demo: | |
gr.HTML(TITLE) | |
with gr.Row(): | |
with gr.Column(): | |
input_image = gr.Image(type="pil", label="Input Image") | |
run_button = gr.Button("Caption") | |
with gr.Column(): | |
output_caption = gr.Textbox(label="Caption") | |
run_button.click(fn=stream_chat, inputs=[input_image], outputs=[output_caption]) | |
if __name__ == "__main__": | |
demo.launch() | |