joy-caption-pre-alpha-mod / joycaption.py
John6666's picture
Upload 6 files
f902fc6 verified
raw
history blame
13.6 kB
import spaces
import gradio as gr
from huggingface_hub import InferenceClient
from torch import nn
from transformers import AutoModel, AutoProcessor, AutoTokenizer, PreTrainedTokenizer, PreTrainedTokenizerFast, AutoModelForCausalLM
from pathlib import Path
import torch
import torch.amp.autocast_mode
from PIL import Image
import os
import gc
device = "cuda" if torch.cuda.is_available() else "cpu"
llm_models = {
"Sao10K/Llama-3.1-8B-Stheno-v3.4": None,
"unsloth/Meta-Llama-3.1-8B-bnb-4bit": None,
"mergekit-community/L3.1-Boshima-b-FIX": None,
"meta-llama/Meta-Llama-3.1-8B": None,
}
CLIP_PATH = "google/siglip-so400m-patch14-384"
VLM_PROMPT = "A descriptive caption for this image:\n"
MODEL_PATH = list(llm_models.keys())[0]
CHECKPOINT_PATH = Path("wpkklhc6")
TITLE = "<h1><center>JoyCaption Pre-Alpha (2024-07-30a)</center></h1>"
HF_TOKEN = os.environ.get("HF_TOKEN", None)
use_inference_client = False
class ImageAdapter(nn.Module):
def __init__(self, input_features: int, output_features: int):
super().__init__()
self.linear1 = nn.Linear(input_features, output_features)
self.activation = nn.GELU()
self.linear2 = nn.Linear(output_features, output_features)
def forward(self, vision_outputs: torch.Tensor):
x = self.linear1(vision_outputs)
x = self.activation(x)
x = self.linear2(x)
return x
# https://huggingface.co/docs/transformers/v4.44.2/gguf
# https://github.com/city96/ComfyUI-GGUF/issues/7
# https://github.com/THUDM/ChatGLM-6B/issues/18
# https://github.com/meta-llama/llama/issues/394
# https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct/discussions/109
# https://huggingface.co/docs/transformers/main/en/main_classes/quantization#offload-between-cpu-and-gpu
# https://huggingface.co/google/flan-ul2/discussions/8
# https://huggingface.co/blog/4bit-transformers-bitsandbytes
tokenizer = None
text_model_client = None
text_model = None
image_adapter = None
def load_text_model(model_name: str=MODEL_PATH, gguf_file: str | None=None, is_nf4: bool=True):
global tokenizer
global text_model
global image_adapter
global text_model_client #
global use_inference_client #
try:
from transformers import BitsAndBytesConfig
nf4_config = BitsAndBytesConfig(load_in_4bit=True, bnb_4bit_quant_type="nf4",
bnb_4bit_use_double_quant=True, bnb_4bit_compute_dtype=torch.bfloat16)
print("Loading tokenizer")
if gguf_file: tokenizer = AutoTokenizer.from_pretrained(model_name, gguf_file=gguf_file, use_fast=True, legacy=False)
else: tokenizer = AutoTokenizer.from_pretrained(model_name, use_fast=False, legacy=False)
assert isinstance(tokenizer, PreTrainedTokenizer) or isinstance(tokenizer, PreTrainedTokenizerFast), f"Tokenizer is of type {type(tokenizer)}"
print(f"Loading LLM: {model_name}")
if gguf_file:
if device == "cpu": text_model = AutoModelForCausalLM.from_pretrained(model_name, gguf_file=gguf_file, device_map=device, torch_dtype=torch.bfloat16).eval()
elif is_nf4: text_model = AutoModelForCausalLM.from_pretrained(model_name, quantization_config=nf4_config, device_map=device, torch_dtype=torch.bfloat16).eval()
else: text_model = AutoModelForCausalLM.from_pretrained(model_name, device_map=device, torch_dtype=torch.bfloat16).eval()
else:
if device == "cpu": text_model = AutoModelForCausalLM.from_pretrained(model_name, gguf_file=gguf_file, device_map=device, torch_dtype=torch.bfloat16).eval()
elif is_nf4: text_model = AutoModelForCausalLM.from_pretrained(model_name, quantization_config=nf4_config, device_map=device, torch_dtype=torch.bfloat16).eval()
else: text_model = AutoModelForCausalLM.from_pretrained(model_name, device_map=device, torch_dtype=torch.bfloat16).eval()
print("Loading image adapter")
image_adapter = ImageAdapter(clip_model.config.hidden_size, text_model.config.hidden_size).eval().to("cpu")
image_adapter.load_state_dict(torch.load(CHECKPOINT_PATH / "image_adapter.pt", map_location="cpu", weights_only=True))
image_adapter.eval().to(device)
except Exception as e:
print(f"LLM load error: {e}")
raise Exception(f"LLM load error: {e}") from e
finally:
torch.cuda.empty_cache()
gc.collect()
load_text_model.zerogpu = True
# Load CLIP
print("Loading CLIP")
clip_processor = AutoProcessor.from_pretrained(CLIP_PATH)
clip_model = AutoModel.from_pretrained(CLIP_PATH).vision_model.eval().requires_grad_(False).to(device)
# Tokenizer
# LLM
# Image Adapter
load_text_model()
@spaces.GPU()
@torch.no_grad()
def stream_chat(input_image: Image.Image):
torch.cuda.empty_cache()
# Preprocess image
image = clip_processor(images=input_image, return_tensors='pt').pixel_values
image = image.to(device)
# Tokenize the prompt
prompt = tokenizer.encode(VLM_PROMPT, return_tensors='pt', padding=False, truncation=False, add_special_tokens=False)
# Embed image
with torch.amp.autocast_mode.autocast(device, enabled=True):
vision_outputs = clip_model(pixel_values=image, output_hidden_states=True)
image_features = vision_outputs.hidden_states[-2]
embedded_images = image_adapter(image_features)
embedded_images = embedded_images.to(device)
# Embed prompt
prompt_embeds = text_model.model.embed_tokens(prompt.to(device))
assert prompt_embeds.shape == (1, prompt.shape[1], text_model.config.hidden_size), f"Prompt shape is {prompt_embeds.shape}, expected {(1, prompt.shape[1], text_model.config.hidden_size)}"
embedded_bos = text_model.model.embed_tokens(torch.tensor([[tokenizer.bos_token_id]], device=text_model.device, dtype=torch.int64))
# Construct prompts
inputs_embeds = torch.cat([
embedded_bos.expand(embedded_images.shape[0], -1, -1),
embedded_images.to(dtype=embedded_bos.dtype),
prompt_embeds.expand(embedded_images.shape[0], -1, -1),
], dim=1)
input_ids = torch.cat([
torch.tensor([[tokenizer.bos_token_id]], dtype=torch.long),
torch.zeros((1, embedded_images.shape[1]), dtype=torch.long),
prompt,
], dim=1).to(device)
attention_mask = torch.ones_like(input_ids)
#generate_ids = text_model.generate(input_ids, inputs_embeds=inputs_embeds, attention_mask=attention_mask, max_new_tokens=300, do_sample=False, suppress_tokens=None)
generate_ids = text_model.generate(input_ids, inputs_embeds=inputs_embeds, attention_mask=attention_mask, max_new_tokens=300, do_sample=True, top_k=10, temperature=0.5, suppress_tokens=None)
# Trim off the prompt
generate_ids = generate_ids[:, input_ids.shape[1]:]
if generate_ids[0][-1] == tokenizer.eos_token_id:
generate_ids = generate_ids[:, :-1]
caption = tokenizer.batch_decode(generate_ids, skip_special_tokens=False, clean_up_tokenization_spaces=False)[0]
return caption.strip()
@spaces.GPU()
@torch.no_grad()
def stream_chat_mod(input_image: Image.Image, max_new_tokens: int=300, top_k: int=10, temperature: float=0.5, progress=gr.Progress(track_tqdm=True)):
global use_inference_client
global text_model
torch.cuda.empty_cache()
gc.collect()
# Preprocess image
image = clip_processor(images=input_image, return_tensors='pt').pixel_values
image = image.to(device)
# Tokenize the prompt
prompt = tokenizer.encode(VLM_PROMPT, return_tensors='pt', padding=False, truncation=False, add_special_tokens=False)
# Embed image
with torch.amp.autocast_mode.autocast(device, enabled=True):
vision_outputs = clip_model(pixel_values=image, output_hidden_states=True)
image_features = vision_outputs.hidden_states[-2]
embedded_images = image_adapter(image_features)
embedded_images = embedded_images.to(device)
# Embed prompt
prompt_embeds = text_model.model.embed_tokens(prompt.to(device))
assert prompt_embeds.shape == (1, prompt.shape[1], text_model.config.hidden_size), f"Prompt shape is {prompt_embeds.shape}, expected {(1, prompt.shape[1], text_model.config.hidden_size)}"
embedded_bos = text_model.model.embed_tokens(torch.tensor([[tokenizer.bos_token_id]], device=text_model.device, dtype=torch.int64))
# Construct prompts
inputs_embeds = torch.cat([
embedded_bos.expand(embedded_images.shape[0], -1, -1),
embedded_images.to(dtype=embedded_bos.dtype),
prompt_embeds.expand(embedded_images.shape[0], -1, -1),
], dim=1)
input_ids = torch.cat([
torch.tensor([[tokenizer.bos_token_id]], dtype=torch.long),
torch.zeros((1, embedded_images.shape[1]), dtype=torch.long),
prompt,
], dim=1).to(device)
attention_mask = torch.ones_like(input_ids)
# https://huggingface.co/docs/transformers/v4.44.2/main_classes/text_generation#transformers.FlaxGenerationMixin.generate
# https://github.com/huggingface/transformers/issues/6535
# https://zenn.dev/hijikix/articles/8c445f4373fdcc ja
# https://github.com/ggerganov/llama.cpp/discussions/7712
# https://huggingface.co/docs/huggingface_hub/guides/inference#openai-compatibility
# https://huggingface.co/docs/huggingface_hub/v0.24.6/en/package_reference/inference_client#huggingface_hub.InferenceClient.text_generation
#generate_ids = text_model.generate(input_ids, inputs_embeds=inputs_embeds, attention_mask=attention_mask, max_new_tokens=300, do_sample=False, suppress_tokens=None)
generate_ids = text_model.generate(input_ids, inputs_embeds=inputs_embeds, attention_mask=attention_mask,
max_new_tokens=max_new_tokens, do_sample=True, top_k=top_k, temperature=temperature, suppress_tokens=None)
print(prompt)
# Trim off the prompt
generate_ids = generate_ids[:, input_ids.shape[1]:]
if generate_ids[0][-1] == tokenizer.eos_token_id:
generate_ids = generate_ids[:, :-1]
caption = tokenizer.batch_decode(generate_ids, skip_special_tokens=False, clean_up_tokenization_spaces=False)[0]
return caption.strip()
def is_repo_name(s):
import re
return re.fullmatch(r'^[^/,\s\"\']+/[^/,\s\"\']+$', s)
def is_repo_exists(repo_id):
from huggingface_hub import HfApi
try:
api = HfApi(token=HF_TOKEN)
if api.repo_exists(repo_id=repo_id): return True
else: return False
except Exception as e:
print(f"Error: Failed to connect {repo_id}.")
print(e)
return True # for safe
def get_text_model():
return list(llm_models.keys())
def is_gguf_repo(repo_id: str):
from huggingface_hub import HfApi
try:
api = HfApi(token=HF_TOKEN)
if not is_repo_name(repo_id) or not is_repo_exists(repo_id): return False
files = api.list_repo_files(repo_id=repo_id)
except Exception as e:
print(f"Error: Failed to get {repo_id}'s info.")
print(e)
gr.Warning(f"Error: Failed to get {repo_id}'s info.")
return False
files = [f for f in files if f.endswith(".gguf")]
if len(files) == 0: return False
else: return True
def get_repo_gguf(repo_id: str):
from huggingface_hub import HfApi
try:
api = HfApi(token=HF_TOKEN)
if not is_repo_name(repo_id) or not is_repo_exists(repo_id): return gr.update(value="", choices=[])
files = api.list_repo_files(repo_id=repo_id)
except Exception as e:
print(f"Error: Failed to get {repo_id}'s info.")
print(e)
gr.Warning(f"Error: Failed to get {repo_id}'s info.")
return gr.update(value="", choices=[])
files = [f for f in files if f.endswith(".gguf")]
if len(files) == 0: return gr.update(value="", choices=[])
else: return gr.update(value=files[0], choices=files)
@spaces.GPU()
def change_text_model(model_name: str=MODEL_PATH, use_client: bool=False, gguf_file: str | None=None,
is_nf4: bool=True, progress=gr.Progress(track_tqdm=True)):
global use_inference_client
global llm_models
use_inference_client = use_client
try:
if not is_repo_name(model_name) or not is_repo_exists(model_name):
raise gr.Error(f"Repo doesn't exist: {model_name}")
if not gguf_file and is_gguf_repo(model_name):
gr.Info(f"Please select a gguf file.")
return gr.update(visible=True)
if use_inference_client:
pass #
else:
load_text_model(model_name, gguf_file, is_nf4)
if model_name not in llm_models: llm_models[model_name] = gguf_file if gguf_file else None
return gr.update(choices=get_text_model())
except Exception as e:
raise gr.Error(f"Model load error: {model_name}, {e}")
# original UI
with gr.Blocks() as demo:
gr.HTML(TITLE)
with gr.Row():
with gr.Column():
input_image = gr.Image(type="pil", label="Input Image")
run_button = gr.Button("Caption")
with gr.Column():
output_caption = gr.Textbox(label="Caption")
run_button.click(fn=stream_chat, inputs=[input_image], outputs=[output_caption])
if __name__ == "__main__":
demo.launch()