John6666 commited on
Commit
1650be4
·
verified ·
1 Parent(s): eb70836

Upload 4 files

Browse files
Files changed (4) hide show
  1. README.md +12 -12
  2. app.py +40 -129
  3. joycaption.py +250 -0
  4. requirements.txt +8 -5
README.md CHANGED
@@ -1,13 +1,13 @@
1
- ---
2
- title: Joy Caption Pre Alpha
3
- emoji: 💬
4
- colorFrom: yellow
5
- colorTo: purple
6
- sdk: gradio
7
- sdk_version: 4.36.1
8
- app_file: app.py
9
- pinned: false
10
- license: mit
11
- ---
12
-
13
  An example chatbot using [Gradio](https://gradio.app), [`huggingface_hub`](https://huggingface.co/docs/huggingface_hub/v0.22.2/en/index), and the [Hugging Face Inference API](https://huggingface.co/docs/api-inference/index).
 
1
+ ---
2
+ title: Joy Caption Pre Alpha Mod
3
+ emoji: 💬
4
+ colorFrom: yellow
5
+ colorTo: purple
6
+ sdk: gradio
7
+ sdk_version: 4.43.0
8
+ app_file: app.py
9
+ pinned: false
10
+ license: mit
11
+ ---
12
+
13
  An example chatbot using [Gradio](https://gradio.app), [`huggingface_hub`](https://huggingface.co/docs/huggingface_hub/v0.22.2/en/index), and the [Hugging Face Inference API](https://huggingface.co/docs/api-inference/index).
app.py CHANGED
@@ -1,129 +1,40 @@
1
- import spaces
2
- import gradio as gr
3
- from huggingface_hub import InferenceClient
4
- from torch import nn
5
- from transformers import AutoModel, AutoProcessor, AutoTokenizer, PreTrainedTokenizer, PreTrainedTokenizerFast, AutoModelForCausalLM
6
- from pathlib import Path
7
- import torch
8
- import torch.amp.autocast_mode
9
- from PIL import Image
10
- import os
11
-
12
-
13
- CLIP_PATH = "google/siglip-so400m-patch14-384"
14
- VLM_PROMPT = "A descriptive caption for this image:\n"
15
- MODEL_PATH = "meta-llama/Meta-Llama-3.1-8B"
16
- CHECKPOINT_PATH = Path("wpkklhc6")
17
- TITLE = "<h1><center>JoyCaption Pre-Alpha (2024-07-30a)</center></h1>"
18
-
19
- HF_TOKEN = os.environ.get("HF_TOKEN", None)
20
-
21
-
22
- class ImageAdapter(nn.Module):
23
- def __init__(self, input_features: int, output_features: int):
24
- super().__init__()
25
- self.linear1 = nn.Linear(input_features, output_features)
26
- self.activation = nn.GELU()
27
- self.linear2 = nn.Linear(output_features, output_features)
28
-
29
- def forward(self, vision_outputs: torch.Tensor):
30
- x = self.linear1(vision_outputs)
31
- x = self.activation(x)
32
- x = self.linear2(x)
33
- return x
34
-
35
-
36
- # Load CLIP
37
- print("Loading CLIP")
38
- clip_processor = AutoProcessor.from_pretrained(CLIP_PATH)
39
- clip_model = AutoModel.from_pretrained(CLIP_PATH)
40
- clip_model = clip_model.vision_model
41
- clip_model.eval()
42
- clip_model.requires_grad_(False)
43
- clip_model.to("cuda")
44
-
45
-
46
- # Tokenizer
47
- print("Loading tokenizer")
48
- tokenizer = AutoTokenizer.from_pretrained(MODEL_PATH, use_fast=False)
49
- assert isinstance(tokenizer, PreTrainedTokenizer) or isinstance(tokenizer, PreTrainedTokenizerFast), f"Tokenizer is of type {type(tokenizer)}"
50
-
51
- # LLM
52
- print("Loading LLM")
53
- text_model = AutoModelForCausalLM.from_pretrained(MODEL_PATH, device_map="auto", torch_dtype=torch.bfloat16)
54
- text_model.eval()
55
-
56
- # Image Adapter
57
- print("Loading image adapter")
58
- image_adapter = ImageAdapter(clip_model.config.hidden_size, text_model.config.hidden_size)
59
- image_adapter.load_state_dict(torch.load(CHECKPOINT_PATH / "image_adapter.pt", map_location="cpu"))
60
- image_adapter.eval()
61
- image_adapter.to("cuda")
62
-
63
-
64
- @spaces.GPU()
65
- @torch.no_grad()
66
- def stream_chat(input_image: Image.Image):
67
- torch.cuda.empty_cache()
68
-
69
- # Preprocess image
70
- image = clip_processor(images=input_image, return_tensors='pt').pixel_values
71
- image = image.to('cuda')
72
-
73
- # Tokenize the prompt
74
- prompt = tokenizer.encode(VLM_PROMPT, return_tensors='pt', padding=False, truncation=False, add_special_tokens=False)
75
-
76
- # Embed image
77
- with torch.amp.autocast_mode.autocast('cuda', enabled=True):
78
- vision_outputs = clip_model(pixel_values=image, output_hidden_states=True)
79
- image_features = vision_outputs.hidden_states[-2]
80
- embedded_images = image_adapter(image_features)
81
- embedded_images = embedded_images.to('cuda')
82
-
83
- # Embed prompt
84
- prompt_embeds = text_model.model.embed_tokens(prompt.to('cuda'))
85
- assert prompt_embeds.shape == (1, prompt.shape[1], text_model.config.hidden_size), f"Prompt shape is {prompt_embeds.shape}, expected {(1, prompt.shape[1], text_model.config.hidden_size)}"
86
- embedded_bos = text_model.model.embed_tokens(torch.tensor([[tokenizer.bos_token_id]], device=text_model.device, dtype=torch.int64))
87
-
88
- # Construct prompts
89
- inputs_embeds = torch.cat([
90
- embedded_bos.expand(embedded_images.shape[0], -1, -1),
91
- embedded_images.to(dtype=embedded_bos.dtype),
92
- prompt_embeds.expand(embedded_images.shape[0], -1, -1),
93
- ], dim=1)
94
-
95
- input_ids = torch.cat([
96
- torch.tensor([[tokenizer.bos_token_id]], dtype=torch.long),
97
- torch.zeros((1, embedded_images.shape[1]), dtype=torch.long),
98
- prompt,
99
- ], dim=1).to('cuda')
100
- attention_mask = torch.ones_like(input_ids)
101
-
102
- #generate_ids = text_model.generate(input_ids, inputs_embeds=inputs_embeds, attention_mask=attention_mask, max_new_tokens=300, do_sample=False, suppress_tokens=None)
103
- generate_ids = text_model.generate(input_ids, inputs_embeds=inputs_embeds, attention_mask=attention_mask, max_new_tokens=300, do_sample=True, top_k=10, temperature=0.5, suppress_tokens=None)
104
-
105
- # Trim off the prompt
106
- generate_ids = generate_ids[:, input_ids.shape[1]:]
107
- if generate_ids[0][-1] == tokenizer.eos_token_id:
108
- generate_ids = generate_ids[:, :-1]
109
-
110
- caption = tokenizer.batch_decode(generate_ids, skip_special_tokens=False, clean_up_tokenization_spaces=False)[0]
111
-
112
- return caption.strip()
113
-
114
-
115
- with gr.Blocks() as demo:
116
- gr.HTML(TITLE)
117
- with gr.Row():
118
- with gr.Column():
119
- input_image = gr.Image(type="pil", label="Input Image")
120
- run_button = gr.Button("Caption")
121
-
122
- with gr.Column():
123
- output_caption = gr.Textbox(label="Caption")
124
-
125
- run_button.click(fn=stream_chat, inputs=[input_image], outputs=[output_caption])
126
-
127
-
128
- if __name__ == "__main__":
129
- demo.launch()
 
1
+ import spaces
2
+ import gradio as gr
3
+ from joycaption import stream_chat_mod, get_text_model, change_text_model
4
+
5
+ JC_TITLE_MD = "<h1><center>JoyCaption Pre-Alpha Mod</center></h1>"
6
+ JC_DESC_MD = """This space is mod of [fancyfeast/joy-caption-pre-alpha](https://huggingface.co/spaces/fancyfeast/joy-caption-pre-alpha),
7
+ [Wi-zz/joy-caption-pre-alpha](https://huggingface.co/Wi-zz/joy-caption-pre-alpha)"""
8
+
9
+ css = """
10
+ .info {text-align:center; display:inline-flex; align-items:center !important}
11
+ """
12
+
13
+ with gr.Blocks() as demo:
14
+ gr.HTML(JC_TITLE_MD)
15
+ with gr.Row():
16
+ with gr.Column():
17
+ with gr.Group():
18
+ jc_input_image = gr.Image(type="pil", label="Input Image", sources=["upload", "clipboard"], height=384)
19
+ with gr.Accordion("Advanced", open=False):
20
+ jc_text_model = gr.Dropdown(label="LLM Model", info="You can enter a huggingface model repo_id to want to use.",
21
+ choices=get_text_model(), value=get_text_model()[0],
22
+ allow_custom_value=True, interactive=True, min_width=320)
23
+ jc_use_inference_client = gr.Checkbox(label="Use Inference Client", value=False, visible=False)
24
+ with gr.Row():
25
+ jc_tokens = gr.Slider(minimum=1, maximum=4096, value=300, step=1, label="Max tokens")
26
+ jc_temperature = gr.Slider(minimum=0.1, maximum=4.0, value=0.5, step=0.1, label="Temperature")
27
+ jc_topk = gr.Slider(minimum=0, maximum=100, value=40, step=10, label="Top-k")
28
+ jc_run_button = gr.Button("Caption", variant="primary")
29
+
30
+ with gr.Column():
31
+ jc_output_caption = gr.Textbox(label="Caption", show_copy_button=True)
32
+ gr.Markdown(JC_DESC_MD, elem_classes="info")
33
+
34
+ jc_run_button.click(fn=stream_chat_mod, inputs=[jc_input_image, jc_tokens, jc_topk, jc_temperature], outputs=[jc_output_caption])
35
+ jc_text_model.change(change_text_model, [jc_text_model, jc_use_inference_client], [jc_text_model], show_api=False)
36
+ jc_use_inference_client.change(change_text_model, [jc_text_model, jc_use_inference_client], [jc_text_model], show_api=False)
37
+
38
+ if __name__ == "__main__":
39
+ demo.queue()
40
+ demo.launch()
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
joycaption.py ADDED
@@ -0,0 +1,250 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import spaces
2
+ import gradio as gr
3
+ from huggingface_hub import InferenceClient
4
+ from torch import nn
5
+ from transformers import AutoModel, AutoProcessor, AutoTokenizer, PreTrainedTokenizer, PreTrainedTokenizerFast, AutoModelForCausalLM
6
+ from pathlib import Path
7
+ import torch
8
+ import torch.amp.autocast_mode
9
+ from PIL import Image
10
+ import os
11
+ import gc
12
+
13
+ device = "cuda" if torch.cuda.is_available() else "cpu"
14
+
15
+ llm_models = [
16
+ "Sao10K/Llama-3.1-8B-Stheno-v3.4",
17
+ "unsloth/Meta-Llama-3.1-8B-bnb-4bit",
18
+ "mergekit-community/L3.1-Boshima-b-FIX",
19
+ "meta-llama/Meta-Llama-3.1-8B",
20
+ ]
21
+
22
+
23
+ CLIP_PATH = "google/siglip-so400m-patch14-384"
24
+ VLM_PROMPT = "A descriptive caption for this image:\n"
25
+ MODEL_PATH = llm_models[0]
26
+ CHECKPOINT_PATH = Path("wpkklhc6")
27
+ TITLE = "<h1><center>JoyCaption Pre-Alpha (2024-07-30a)</center></h1>"
28
+
29
+ HF_TOKEN = os.environ.get("HF_TOKEN", None)
30
+ use_inference_client = False
31
+
32
+ class ImageAdapter(nn.Module):
33
+ def __init__(self, input_features: int, output_features: int):
34
+ super().__init__()
35
+ self.linear1 = nn.Linear(input_features, output_features)
36
+ self.activation = nn.GELU()
37
+ self.linear2 = nn.Linear(output_features, output_features)
38
+
39
+ def forward(self, vision_outputs: torch.Tensor):
40
+ x = self.linear1(vision_outputs)
41
+ x = self.activation(x)
42
+ x = self.linear2(x)
43
+ return x
44
+
45
+ # https://huggingface.co/docs/transformers/main/en/main_classes/quantization#offload-between-cpu-and-gpu
46
+ # https://huggingface.co/google/flan-ul2/discussions/8
47
+
48
+ text_model_client = None
49
+ text_model = None
50
+ image_adapter = None
51
+ def load_text_model(model_name: str=MODEL_PATH):
52
+ global text_model
53
+ global image_adapter
54
+ global text_model_client
55
+ global use_inference_client
56
+ try:
57
+ print(f"Loading LLM: {model_name}")
58
+ if device == "cpu": text_model = AutoModelForCausalLM.from_pretrained(model_name, device_map=device, torch_dtype=torch.bfloat16).eval()
59
+ else: text_model = AutoModelForCausalLM.from_pretrained(model_name, device_map=device, torch_dtype=torch.bfloat16).eval()
60
+ print("Loading image adapter")
61
+ image_adapter = ImageAdapter(clip_model.config.hidden_size, text_model.config.hidden_size).eval().to("cpu")
62
+ image_adapter.load_state_dict(torch.load(CHECKPOINT_PATH / "image_adapter.pt", map_location="cpu", weights_only=True))
63
+ image_adapter.eval().to(device)
64
+ except Exception as e:
65
+ print(f"LLM load error: {e}")
66
+ raise Exception(f"LLM load error: {e}") from e
67
+ finally:
68
+ torch.cuda.empty_cache()
69
+ gc.collect()
70
+
71
+ load_text_model.zerogpu = True
72
+
73
+ # Load CLIP
74
+ print("Loading CLIP")
75
+ clip_processor = AutoProcessor.from_pretrained(CLIP_PATH)
76
+ clip_model = AutoModel.from_pretrained(CLIP_PATH).vision_model.eval().requires_grad_(False).to(device)
77
+
78
+ # Tokenizer
79
+ print("Loading tokenizer")
80
+ tokenizer = AutoTokenizer.from_pretrained(MODEL_PATH, use_fast=False)
81
+ assert isinstance(tokenizer, PreTrainedTokenizer) or isinstance(tokenizer, PreTrainedTokenizerFast), f"Tokenizer is of type {type(tokenizer)}"
82
+
83
+ # LLM
84
+ # Image Adapter
85
+ load_text_model()
86
+
87
+ @spaces.GPU()
88
+ @torch.no_grad()
89
+ def stream_chat(input_image: Image.Image):
90
+ torch.cuda.empty_cache()
91
+
92
+ # Preprocess image
93
+ image = clip_processor(images=input_image, return_tensors='pt').pixel_values
94
+ image = image.to(device)
95
+
96
+ # Tokenize the prompt
97
+ prompt = tokenizer.encode(VLM_PROMPT, return_tensors='pt', padding=False, truncation=False, add_special_tokens=False)
98
+
99
+ # Embed image
100
+ with torch.amp.autocast_mode.autocast(device, enabled=True):
101
+ vision_outputs = clip_model(pixel_values=image, output_hidden_states=True)
102
+ image_features = vision_outputs.hidden_states[-2]
103
+ embedded_images = image_adapter(image_features)
104
+ embedded_images = embedded_images.to(device)
105
+
106
+ # Embed prompt
107
+ prompt_embeds = text_model.model.embed_tokens(prompt.to(device))
108
+ assert prompt_embeds.shape == (1, prompt.shape[1], text_model.config.hidden_size), f"Prompt shape is {prompt_embeds.shape}, expected {(1, prompt.shape[1], text_model.config.hidden_size)}"
109
+ embedded_bos = text_model.model.embed_tokens(torch.tensor([[tokenizer.bos_token_id]], device=text_model.device, dtype=torch.int64))
110
+
111
+ # Construct prompts
112
+ inputs_embeds = torch.cat([
113
+ embedded_bos.expand(embedded_images.shape[0], -1, -1),
114
+ embedded_images.to(dtype=embedded_bos.dtype),
115
+ prompt_embeds.expand(embedded_images.shape[0], -1, -1),
116
+ ], dim=1)
117
+
118
+ input_ids = torch.cat([
119
+ torch.tensor([[tokenizer.bos_token_id]], dtype=torch.long),
120
+ torch.zeros((1, embedded_images.shape[1]), dtype=torch.long),
121
+ prompt,
122
+ ], dim=1).to(device)
123
+ attention_mask = torch.ones_like(input_ids)
124
+
125
+ #generate_ids = text_model.generate(input_ids, inputs_embeds=inputs_embeds, attention_mask=attention_mask, max_new_tokens=300, do_sample=False, suppress_tokens=None)
126
+ generate_ids = text_model.generate(input_ids, inputs_embeds=inputs_embeds, attention_mask=attention_mask, max_new_tokens=300, do_sample=True, top_k=10, temperature=0.5, suppress_tokens=None)
127
+
128
+ # Trim off the prompt
129
+ generate_ids = generate_ids[:, input_ids.shape[1]:]
130
+ if generate_ids[0][-1] == tokenizer.eos_token_id:
131
+ generate_ids = generate_ids[:, :-1]
132
+
133
+ caption = tokenizer.batch_decode(generate_ids, skip_special_tokens=False, clean_up_tokenization_spaces=False)[0]
134
+
135
+ return caption.strip()
136
+
137
+
138
+ @spaces.GPU()
139
+ @torch.no_grad()
140
+ def stream_chat_mod(input_image: Image.Image, max_new_tokens: int=300, top_k: int=10, temperature: float=0.5, progress=gr.Progress(track_tqdm=True)):
141
+ global use_inference_client
142
+ global text_model
143
+ torch.cuda.empty_cache()
144
+ gc.collect()
145
+
146
+ # Preprocess image
147
+ image = clip_processor(images=input_image, return_tensors='pt').pixel_values
148
+ image = image.to(device)
149
+
150
+ # Tokenize the prompt
151
+ prompt = tokenizer.encode(VLM_PROMPT, return_tensors='pt', padding=False, truncation=False, add_special_tokens=False)
152
+
153
+ # Embed image
154
+ with torch.amp.autocast_mode.autocast(device, enabled=True):
155
+ vision_outputs = clip_model(pixel_values=image, output_hidden_states=True)
156
+ image_features = vision_outputs.hidden_states[-2]
157
+ embedded_images = image_adapter(image_features)
158
+ embedded_images = embedded_images.to(device)
159
+
160
+ # Embed prompt
161
+ prompt_embeds = text_model.model.embed_tokens(prompt.to(device))
162
+ assert prompt_embeds.shape == (1, prompt.shape[1], text_model.config.hidden_size), f"Prompt shape is {prompt_embeds.shape}, expected {(1, prompt.shape[1], text_model.config.hidden_size)}"
163
+ embedded_bos = text_model.model.embed_tokens(torch.tensor([[tokenizer.bos_token_id]], device=text_model.device, dtype=torch.int64))
164
+
165
+ # Construct prompts
166
+ inputs_embeds = torch.cat([
167
+ embedded_bos.expand(embedded_images.shape[0], -1, -1),
168
+ embedded_images.to(dtype=embedded_bos.dtype),
169
+ prompt_embeds.expand(embedded_images.shape[0], -1, -1),
170
+ ], dim=1)
171
+
172
+ input_ids = torch.cat([
173
+ torch.tensor([[tokenizer.bos_token_id]], dtype=torch.long),
174
+ torch.zeros((1, embedded_images.shape[1]), dtype=torch.long),
175
+ prompt,
176
+ ], dim=1).to(device)
177
+ attention_mask = torch.ones_like(input_ids)
178
+
179
+ # https://huggingface.co/docs/huggingface_hub/guides/inference#openai-compatibility
180
+ # https://huggingface.co/docs/huggingface_hub/v0.24.6/en/package_reference/inference_client#huggingface_hub.InferenceClient.text_generation
181
+ #generate_ids = text_model.generate(input_ids, inputs_embeds=inputs_embeds, attention_mask=attention_mask, max_new_tokens=300, do_sample=False, suppress_tokens=None)
182
+ generate_ids = text_model.generate(input_ids, inputs_embeds=inputs_embeds, attention_mask=attention_mask,
183
+ max_new_tokens=max_new_tokens, do_sample=True, top_k=top_k, temperature=temperature, suppress_tokens=None)
184
+
185
+ # Trim off the prompt
186
+ generate_ids = generate_ids[:, input_ids.shape[1]:]
187
+ if generate_ids[0][-1] == tokenizer.eos_token_id:
188
+ generate_ids = generate_ids[:, :-1]
189
+
190
+ caption = tokenizer.batch_decode(generate_ids, skip_special_tokens=False, clean_up_tokenization_spaces=False)[0]
191
+
192
+ return caption.strip()
193
+
194
+
195
+ def is_repo_name(s):
196
+ import re
197
+ return re.fullmatch(r'^[^/,\s\"\']+/[^/,\s\"\']+$', s)
198
+
199
+
200
+ def is_repo_exists(repo_id):
201
+ from huggingface_hub import HfApi
202
+ api = HfApi()
203
+ try:
204
+ if api.repo_exists(repo_id=repo_id): return True
205
+ else: return False
206
+ except Exception as e:
207
+ print(f"Error: Failed to connect {repo_id}.")
208
+ print(e)
209
+ return True # for safe
210
+
211
+
212
+ def get_text_model():
213
+ return llm_models
214
+
215
+
216
+ @spaces.GPU()
217
+ def change_text_model(model_name: str=MODEL_PATH, use_client: bool=False, progress=gr.Progress(track_tqdm=True)):
218
+ global use_inference_client
219
+ global text_model
220
+ global llm_models
221
+ use_inference_client = use_client
222
+ try:
223
+ if not is_repo_name(model_name) or not is_repo_exists(model_name):
224
+ raise gr.Error(f"Repo doesn't exist: {model_name}")
225
+ if use_inference_client:
226
+ pass
227
+ else:
228
+ load_text_model(model_name)
229
+ if model_name not in llm_models: llm_models.append(model_name)
230
+ return gr.update(visible=True)
231
+ except Exception as e:
232
+ raise gr.Error(f"Model load error: {model_name}, {e}")
233
+
234
+
235
+ # original UI
236
+ with gr.Blocks() as demo:
237
+ gr.HTML(TITLE)
238
+ with gr.Row():
239
+ with gr.Column():
240
+ input_image = gr.Image(type="pil", label="Input Image")
241
+ run_button = gr.Button("Caption")
242
+
243
+ with gr.Column():
244
+ output_caption = gr.Textbox(label="Caption")
245
+
246
+ run_button.click(fn=stream_chat, inputs=[input_image], outputs=[output_caption])
247
+
248
+
249
+ if __name__ == "__main__":
250
+ demo.launch()
requirements.txt CHANGED
@@ -1,5 +1,8 @@
1
- huggingface_hub==0.24.3
2
- accelerate
3
- torch
4
- transformers==4.43.3
5
- sentencepiece
 
 
 
 
1
+ huggingface_hub
2
+ accelerate
3
+ torch
4
+ transformers==4.43.3
5
+ sentencepiece
6
+ bitsandbytes
7
+ Pillow
8
+ protobuf