diff --git "a/app.py" "b/app.py" --- "a/app.py" +++ "b/app.py" @@ -1,526 +1,1668 @@ import spaces +import os +from stablepy import ( + Model_Diffusers, + SCHEDULE_TYPE_OPTIONS, + SCHEDULE_PREDICTION_TYPE_OPTIONS, + check_scheduler_compatibility, + TASK_AND_PREPROCESSORS, +) +from constants import ( + TASK_STABLEPY, + TASK_MODEL_LIST, + UPSCALER_DICT_GUI, + UPSCALER_KEYS, + PROMPT_W_OPTIONS, + WARNING_MSG_VAE, + SDXL_TASK, + MODEL_TYPE_TASK, + POST_PROCESSING_SAMPLER, + DIFFUSERS_CONTROLNET_MODEL, + +) +from stablepy.diffusers_vanilla.style_prompt_config import STYLE_NAMES +import torch +import re +from stablepy import ( + scheduler_names, + IP_ADAPTERS_SD, + IP_ADAPTERS_SDXL, +) +import time +from PIL import ImageFile +from utils import ( + get_model_list, + extract_parameters, + get_model_type, + extract_exif_data, + create_mask_now, + download_diffuser_repo, + get_used_storage_gb, + delete_model, + progress_step_bar, + html_template_message, + escape_html, +) +from image_processor import preprocessor_tab +from datetime import datetime import gradio as gr -import numpy as np - -# DiffuseCraft -from dc import (infer, _infer, pass_result, get_diffusers_model_list, get_samplers, save_image_history, - get_vaes, enable_diffusers_model_detail, extract_exif_data, esrgan_upscale, UPSCALER_KEYS, - preset_quality, preset_styles, process_style_prompt, get_all_lora_tupled_list, update_loras, apply_lora_prompt, - download_my_lora, search_civitai_lora, update_civitai_selection, select_civitai_lora, search_civitai_lora_json, - get_t2i_model_info, get_civitai_tag, CIVITAI_SORT, CIVITAI_PERIOD, CIVITAI_BASEMODEL, - SCHEDULE_TYPE_OPTIONS, SCHEDULE_PREDICTION_TYPE_OPTIONS, preprocessor_tab, SDXL_TASK, TASK_MODEL_LIST, - PROMPT_W_OPTIONS, POST_PROCESSING_SAMPLER, IP_ADAPTERS_SD, IP_ADAPTERS_SDXL, DIFFUSERS_CONTROLNET_MODEL, - TASK_AND_PREPROCESSORS, update_task_options, change_preprocessor_choices, get_ti_choices, - update_textual_inversion, set_textual_inversion_prompt, create_mask_now) -# Translator -from llmdolphin import (dolphin_respond_auto, dolphin_parse_simple, - get_llm_formats, get_dolphin_model_format, get_dolphin_models, - get_dolphin_model_info, select_dolphin_model, select_dolphin_format, get_dolphin_sysprompt) -# Tagger -from tagger.v2 import v2_upsampling_prompt, V2_ALL_MODELS -from tagger.utils import (gradio_copy_text, gradio_copy_prompt, COPY_ACTION_JS, +import logging +import diffusers +import warnings +from stablepy import logger +from diffusers import FluxPipeline +# import urllib.parse + +ImageFile.LOAD_TRUNCATED_IMAGES = True +torch.backends.cuda.matmul.allow_tf32 = True +# os.environ["PYTORCH_NO_CUDA_MEMORY_CACHING"] = "1" +print(os.getenv("SPACES_ZERO_GPU")) + +## BEGIN MOD +from modutils import (list_uniq, download_private_repo, get_model_id_list, get_tupled_embed_list, + get_lora_model_list, get_all_lora_tupled_list, update_loras, apply_lora_prompt, set_prompt_loras, + get_my_lora, upload_file_lora, move_file_lora, search_civitai_lora, select_civitai_lora, + update_civitai_selection, get_civitai_tag, CIVITAI_SORT, CIVITAI_PERIOD, CIVITAI_BASEMODEL, + set_textual_inversion_prompt, get_model_pipeline, change_interface_mode, get_t2i_model_info, + get_tupled_model_list, save_gallery_images, save_gallery_history, set_optimization, set_sampler_settings, + set_quick_presets, process_style_prompt, optimization_list, save_images, download_things, valid_model_name, + preset_styles, preset_quality, preset_sampler_setting, translate_to_en, EXAMPLES_GUI, RESOURCES) +from env import (HF_TOKEN, CIVITAI_API_KEY, HF_LORA_ESSENTIAL_PRIVATE_REPO, HF_VAE_PRIVATE_REPO, + HF_SDXL_EMBEDS_NEGATIVE_PRIVATE_REPO, HF_SDXL_EMBEDS_POSITIVE_PRIVATE_REPO, + DIRECTORY_MODELS, DIRECTORY_LORAS, DIRECTORY_VAES, DIRECTORY_EMBEDS, DIRECTORY_EMBEDS_SDXL, + DIRECTORY_EMBEDS_POSITIVE_SDXL, LOAD_DIFFUSERS_FORMAT_MODEL, + DOWNLOAD_MODEL_LIST, DOWNLOAD_LORA_LIST, DOWNLOAD_VAE_LIST, DOWNLOAD_EMBEDS) + +download_private_repo(HF_LORA_ESSENTIAL_PRIVATE_REPO, DIRECTORY_LORAS, True) +download_private_repo(HF_VAE_PRIVATE_REPO, DIRECTORY_VAES, False) +## END MOD + +# - **Download Models** +DOWNLOAD_MODEL = ", ".join(DOWNLOAD_MODEL_LIST) +# - **Download VAEs** +DOWNLOAD_VAE = ", ".join(DOWNLOAD_VAE_LIST) +# - **Download LoRAs** +DOWNLOAD_LORA = ", ".join(DOWNLOAD_LORA_LIST) + +# Download stuffs +for url in [url.strip() for url in DOWNLOAD_MODEL.split(',')]: + if not os.path.exists(f"./models/{url.split('/')[-1]}"): + download_things(DIRECTORY_MODELS, url, HF_TOKEN, CIVITAI_API_KEY) +for url in [url.strip() for url in DOWNLOAD_VAE.split(',')]: + if not os.path.exists(f"./vaes/{url.split('/')[-1]}"): + download_things(DIRECTORY_VAES, url, HF_TOKEN, CIVITAI_API_KEY) +for url in [url.strip() for url in DOWNLOAD_LORA.split(',')]: + if not os.path.exists(f"./loras/{url.split('/')[-1]}"): + download_things(DIRECTORY_LORAS, url, HF_TOKEN, CIVITAI_API_KEY) + +# Download Embeddings +for url_embed in DOWNLOAD_EMBEDS: + if not os.path.exists(f"./embedings/{url_embed.split('/')[-1]}"): + download_things(DIRECTORY_EMBEDS, url_embed, HF_TOKEN, CIVITAI_API_KEY) + +# Build list models +embed_list = get_model_list(DIRECTORY_EMBEDS) +lora_model_list = get_lora_model_list() +vae_model_list = get_model_list(DIRECTORY_VAES) +vae_model_list.insert(0, "BakedVAE") +vae_model_list.insert(0, "None") + +## BEGIN MOD +single_file_model_list = get_model_list(DIRECTORY_MODELS) +model_list = list_uniq(get_model_id_list() + LOAD_DIFFUSERS_FORMAT_MODEL + single_file_model_list) +download_private_repo(HF_SDXL_EMBEDS_NEGATIVE_PRIVATE_REPO, DIRECTORY_EMBEDS_SDXL, False) +download_private_repo(HF_SDXL_EMBEDS_POSITIVE_PRIVATE_REPO, DIRECTORY_EMBEDS_POSITIVE_SDXL, False) +embed_sdxl_list = get_model_list(DIRECTORY_EMBEDS_SDXL) + get_model_list(DIRECTORY_EMBEDS_POSITIVE_SDXL) + +def get_embed_list(pipeline_name): + return get_tupled_embed_list(embed_sdxl_list if pipeline_name == "StableDiffusionXLPipeline" else embed_list) +## END MOD + +print('\033[33m🏁 Download and listing of valid models completed.\033[0m') + +flux_repo = "camenduru/FLUX.1-dev-diffusers" +flux_pipe = FluxPipeline.from_pretrained( + flux_repo, + transformer=None, + torch_dtype=torch.bfloat16, +).to("cuda") +components = flux_pipe.components +components.pop("transformer", None) +delete_model(flux_repo) + +####################### +# GUI +####################### +logging.getLogger("diffusers").setLevel(logging.ERROR) +diffusers.utils.logging.set_verbosity(40) +warnings.filterwarnings(action="ignore", category=FutureWarning, module="diffusers") +warnings.filterwarnings(action="ignore", category=UserWarning, module="diffusers") +warnings.filterwarnings(action="ignore", category=FutureWarning, module="transformers") +## BEGIN MOD +#logger.setLevel(logging.CRITICAL) +logger.setLevel(logging.DEBUG) + +from tagger.v2 import V2_ALL_MODELS, v2_random_prompt, v2_upsampling_prompt +from tagger.utils import (gradio_copy_text, COPY_ACTION_JS, gradio_copy_prompt, V2_ASPECT_RATIO_OPTIONS, V2_RATING_OPTIONS, V2_LENGTH_OPTIONS, V2_IDENTITY_OPTIONS) from tagger.tagger import (predict_tags_wd, convert_danbooru_to_e621_prompt, - remove_specific_prompt, insert_recom_prompt, compose_prompt_to_copy, - translate_prompt, select_random_character) -from tagger.fl2sd3longcap import predict_tags_fl2_sd3 + remove_specific_prompt, insert_recom_prompt, insert_model_recom_prompt, + compose_prompt_to_copy, translate_prompt, select_random_character) def description_ui(): gr.Markdown( """ -## Danbooru Tags Transformer V2 Demo with WD Tagger & SD3 Long Captioner +## Danbooru Tags Transformer V2 Demo with WD Tagger (Image =>) Prompt => Upsampled longer prompt - Mod of p1atdev's [Danbooru Tags Transformer V2 Demo](https://huggingface.co/spaces/p1atdev/danbooru-tags-transformer-v2) and [WD Tagger with 🤗 transformers](https://huggingface.co/spaces/p1atdev/wd-tagger-transformers). -- Models: p1atdev's [wd-swinv2-tagger-v3-hf](https://huggingface.co/p1atdev/wd-swinv2-tagger-v3-hf), [dart-v2-moe-sft](https://huggingface.co/p1atdev/dart-v2-moe-sft), [dart-v2-sft](https://huggingface.co/p1atdev/dart-v2-sft)\ -, gokaygokay's [Florence-2-SD3-Captioner](https://huggingface.co/gokaygokay/Florence-2-SD3-Captioner) +- Models: p1atdev's [wd-swinv2-tagger-v3-hf](https://huggingface.co/p1atdev/wd-swinv2-tagger-v3-hf), [dart-v2-moe-sft](https://huggingface.co/p1atdev/dart-v2-moe-sft) """ ) +## END MOD + +class GuiSD: + def __init__(self, stream=True): + self.model = None + self.status_loading = False + self.sleep_loading = 4 + self.last_load = datetime.now() + self.inventory = [] + + def update_storage_models(self, storage_floor_gb=24, required_inventory_for_purge=3): + while get_used_storage_gb() > storage_floor_gb: + if len(self.inventory) < required_inventory_for_purge: + break + removal_candidate = self.inventory.pop(0) + delete_model(removal_candidate) + + def update_inventory(self, model_name): + if model_name not in single_file_model_list: + self.inventory = [ + m for m in self.inventory if m != model_name + ] + [model_name] + print(self.inventory) + + def load_new_model(self, model_name, vae_model, task, controlnet_model, progress=gr.Progress(track_tqdm=True)): + + # download link model > model_name + + model_name = valid_model_name(model_name) # MOD + + self.update_storage_models() + + vae_model = vae_model if vae_model != "None" else None + model_type = get_model_type(model_name) + dtype_model = torch.bfloat16 if model_type == "FLUX" else torch.float16 + + if not os.path.exists(model_name): + _ = download_diffuser_repo( + repo_name=model_name, + model_type=model_type, + revision="main", + token=True, + ) + + self.update_inventory(model_name) + + for i in range(68): + if not self.status_loading: + self.status_loading = True + if i > 0: + time.sleep(self.sleep_loading) + print("Previous model ops...") + break + time.sleep(0.5) + print(f"Waiting queue {i}") + yield "Waiting queue" + + self.status_loading = True + + yield f"Loading model: {model_name}" + + if vae_model == "BakedVAE": + if not os.path.exists(model_name): + vae_model = model_name + else: + vae_model = None + elif vae_model: + vae_type = "SDXL" if "sdxl" in vae_model.lower() else "SD 1.5" + if model_type != vae_type: + gr.Warning(WARNING_MSG_VAE) + + print("Loading model...") + + try: + start_time = time.time() + + if self.model is None: + self.model = Model_Diffusers( + base_model_id=model_name, + task_name=TASK_STABLEPY[task], + vae_model=vae_model, + type_model_precision=dtype_model, + retain_task_model_in_cache=False, + controlnet_model=controlnet_model, + device="cpu", + env_components=components, + ) + self.model.advanced_params(image_preprocessor_cuda_active=True) + else: + if self.model.base_model_id != model_name: + load_now_time = datetime.now() + elapsed_time = max((load_now_time - self.last_load).total_seconds(), 0) + + if elapsed_time <= 9: + print("Waiting for the previous model's time ops...") + time.sleep(9 - elapsed_time) + + self.model.device = torch.device("cpu") + self.model.load_pipe( + model_name, + task_name=TASK_STABLEPY[task], + vae_model=vae_model, + type_model_precision=dtype_model, + retain_task_model_in_cache=False, + controlnet_model=controlnet_model, + ) + + end_time = time.time() + self.sleep_loading = max(min(int(end_time - start_time), 10), 4) + except Exception as e: + self.last_load = datetime.now() + self.status_loading = False + self.sleep_loading = 4 + raise e + + self.last_load = datetime.now() + self.status_loading = False + + yield f"Model loaded: {model_name}" + + #@spaces.GPU + @torch.inference_mode() + def generate_pipeline( + self, + prompt, + neg_prompt, + num_images, + steps, + cfg, + clip_skip, + seed, + lora1, + lora_scale1, + lora2, + lora_scale2, + lora3, + lora_scale3, + lora4, + lora_scale4, + lora5, + lora_scale5, + lora6, + lora_scale6, + lora7, + lora_scale7, + sampler, + schedule_type, + schedule_prediction_type, + img_height, + img_width, + model_name, + vae_model, + task, + image_control, + preprocessor_name, + preprocess_resolution, + image_resolution, + style_prompt, # list [] + style_json_file, + image_mask, + strength, + low_threshold, + high_threshold, + value_threshold, + distance_threshold, + recolor_gamma_correction, + tile_blur_sigma, + controlnet_output_scaling_in_unet, + controlnet_start_threshold, + controlnet_stop_threshold, + textual_inversion, + syntax_weights, + upscaler_model_path, + upscaler_increases_size, + esrgan_tile, + esrgan_tile_overlap, + hires_steps, + hires_denoising_strength, + hires_sampler, + hires_prompt, + hires_negative_prompt, + hires_before_adetailer, + hires_after_adetailer, + hires_schedule_type, + hires_guidance_scale, + controlnet_model, + loop_generation, + leave_progress_bar, + disable_progress_bar, + image_previews, + display_images, + save_generated_images, + filename_pattern, + image_storage_location, + retain_compel_previous_load, + retain_detailfix_model_previous_load, + retain_hires_model_previous_load, + t2i_adapter_preprocessor, + t2i_adapter_conditioning_scale, + t2i_adapter_conditioning_factor, + xformers_memory_efficient_attention, + freeu, + generator_in_cpu, + adetailer_inpaint_only, + adetailer_verbose, + adetailer_sampler, + adetailer_active_a, + prompt_ad_a, + negative_prompt_ad_a, + strength_ad_a, + face_detector_ad_a, + person_detector_ad_a, + hand_detector_ad_a, + mask_dilation_a, + mask_blur_a, + mask_padding_a, + adetailer_active_b, + prompt_ad_b, + negative_prompt_ad_b, + strength_ad_b, + face_detector_ad_b, + person_detector_ad_b, + hand_detector_ad_b, + mask_dilation_b, + mask_blur_b, + mask_padding_b, + retain_task_cache_gui, + guidance_rescale, + image_ip1, + mask_ip1, + model_ip1, + mode_ip1, + scale_ip1, + image_ip2, + mask_ip2, + model_ip2, + mode_ip2, + scale_ip2, + pag_scale, + ): + info_state = html_template_message("Navigating latent space...") + yield info_state, gr.update(), gr.update() + + vae_model = vae_model if vae_model != "None" else None + loras_list = [lora1, lora2, lora3, lora4, lora5, lora6, lora7] + vae_msg = f"VAE: {vae_model}" if vae_model else "" + msg_lora = "" + +## BEGIN MOD + loras_list = [s if s else "None" for s in loras_list] + global lora_model_list + lora_model_list = get_lora_model_list() + lora1, lora_scale1, lora2, lora_scale2, lora3, lora_scale3, lora4, lora_scale4, lora5, lora_scale5, lora6, lora_scale6, lora7, lora_scale7 = \ + set_prompt_loras(prompt, syntax_weights, model_name, lora1, lora_scale1, lora2, lora_scale2, lora3, + lora_scale3, lora4, lora_scale4, lora5, lora_scale5, lora6, lora_scale6, lora7, lora_scale7) +## END MOD + + print("Config model:", model_name, vae_model, loras_list) + + task = TASK_STABLEPY[task] + + params_ip_img = [] + params_ip_msk = [] + params_ip_model = [] + params_ip_mode = [] + params_ip_scale = [] + + all_adapters = [ + (image_ip1, mask_ip1, model_ip1, mode_ip1, scale_ip1), + (image_ip2, mask_ip2, model_ip2, mode_ip2, scale_ip2), + ] + + if not hasattr(self.model.pipe, "transformer"): + for imgip, mskip, modelip, modeip, scaleip in all_adapters: + if imgip: + params_ip_img.append(imgip) + if mskip: + params_ip_msk.append(mskip) + params_ip_model.append(modelip) + params_ip_mode.append(modeip) + params_ip_scale.append(scaleip) + + concurrency = 5 + self.model.stream_config(concurrency=concurrency, latent_resize_by=1, vae_decoding=False) + + if task != "txt2img" and not image_control: + raise ValueError("No control image found: To use this function, you have to upload an image in 'Image ControlNet/Inpaint/Img2img'") + + if task == "inpaint" and not image_mask: + raise ValueError("No mask image found: Specify one in 'Image Mask'") + + if upscaler_model_path in UPSCALER_KEYS[:9]: + upscaler_model = upscaler_model_path + else: + directory_upscalers = 'upscalers' + os.makedirs(directory_upscalers, exist_ok=True) + + url_upscaler = UPSCALER_DICT_GUI[upscaler_model_path] + + if not os.path.exists(f"./upscalers/{url_upscaler.split('/')[-1]}"): + download_things(directory_upscalers, url_upscaler, HF_TOKEN) + + upscaler_model = f"./upscalers/{url_upscaler.split('/')[-1]}" + + logging.getLogger("ultralytics").setLevel(logging.INFO if adetailer_verbose else logging.ERROR) + + adetailer_params_A = { + "face_detector_ad": face_detector_ad_a, + "person_detector_ad": person_detector_ad_a, + "hand_detector_ad": hand_detector_ad_a, + "prompt": prompt_ad_a, + "negative_prompt": negative_prompt_ad_a, + "strength": strength_ad_a, + # "image_list_task" : None, + "mask_dilation": mask_dilation_a, + "mask_blur": mask_blur_a, + "mask_padding": mask_padding_a, + "inpaint_only": adetailer_inpaint_only, + "sampler": adetailer_sampler, + } + + adetailer_params_B = { + "face_detector_ad": face_detector_ad_b, + "person_detector_ad": person_detector_ad_b, + "hand_detector_ad": hand_detector_ad_b, + "prompt": prompt_ad_b, + "negative_prompt": negative_prompt_ad_b, + "strength": strength_ad_b, + # "image_list_task" : None, + "mask_dilation": mask_dilation_b, + "mask_blur": mask_blur_b, + "mask_padding": mask_padding_b, + } + pipe_params = { + "prompt": prompt, + "negative_prompt": neg_prompt, + "img_height": img_height, + "img_width": img_width, + "num_images": num_images, + "num_steps": steps, + "guidance_scale": cfg, + "clip_skip": clip_skip, + "pag_scale": float(pag_scale), + "seed": seed, + "image": image_control, + "preprocessor_name": preprocessor_name, + "preprocess_resolution": preprocess_resolution, + "image_resolution": image_resolution, + "style_prompt": style_prompt if style_prompt else "", + "style_json_file": "", + "image_mask": image_mask, # only for Inpaint + "strength": strength, # only for Inpaint or ... + "low_threshold": low_threshold, + "high_threshold": high_threshold, + "value_threshold": value_threshold, + "distance_threshold": distance_threshold, + "recolor_gamma_correction": float(recolor_gamma_correction), + "tile_blur_sigma": int(tile_blur_sigma), + "lora_A": lora1 if lora1 != "None" else None, + "lora_scale_A": lora_scale1, + "lora_B": lora2 if lora2 != "None" else None, + "lora_scale_B": lora_scale2, + "lora_C": lora3 if lora3 != "None" else None, + "lora_scale_C": lora_scale3, + "lora_D": lora4 if lora4 != "None" else None, + "lora_scale_D": lora_scale4, + "lora_E": lora5 if lora5 != "None" else None, + "lora_scale_E": lora_scale5, + "lora_F": lora6 if lora6 != "None" else None, + "lora_scale_F": lora_scale6, + "lora_G": lora7 if lora7 != "None" else None, + "lora_scale_G": lora_scale7, +## BEGIN MOD + "textual_inversion": get_embed_list(self.model.class_name) if textual_inversion else [], +## END MOD + "syntax_weights": syntax_weights, # "Classic" + "sampler": sampler, + "schedule_type": schedule_type, + "schedule_prediction_type": schedule_prediction_type, + "xformers_memory_efficient_attention": xformers_memory_efficient_attention, + "gui_active": True, + "loop_generation": loop_generation, + "controlnet_conditioning_scale": float(controlnet_output_scaling_in_unet), + "control_guidance_start": float(controlnet_start_threshold), + "control_guidance_end": float(controlnet_stop_threshold), + "generator_in_cpu": generator_in_cpu, + "FreeU": freeu, + "adetailer_A": adetailer_active_a, + "adetailer_A_params": adetailer_params_A, + "adetailer_B": adetailer_active_b, + "adetailer_B_params": adetailer_params_B, + "leave_progress_bar": leave_progress_bar, + "disable_progress_bar": disable_progress_bar, + "image_previews": image_previews, + "display_images": display_images, + "save_generated_images": save_generated_images, + "filename_pattern": filename_pattern, + "image_storage_location": image_storage_location, + "retain_compel_previous_load": retain_compel_previous_load, + "retain_detailfix_model_previous_load": retain_detailfix_model_previous_load, + "retain_hires_model_previous_load": retain_hires_model_previous_load, + "t2i_adapter_preprocessor": t2i_adapter_preprocessor, + "t2i_adapter_conditioning_scale": float(t2i_adapter_conditioning_scale), + "t2i_adapter_conditioning_factor": float(t2i_adapter_conditioning_factor), + "upscaler_model_path": upscaler_model, + "upscaler_increases_size": upscaler_increases_size, + "esrgan_tile": esrgan_tile, + "esrgan_tile_overlap": esrgan_tile_overlap, + "hires_steps": hires_steps, + "hires_denoising_strength": hires_denoising_strength, + "hires_prompt": hires_prompt, + "hires_negative_prompt": hires_negative_prompt, + "hires_sampler": hires_sampler, + "hires_before_adetailer": hires_before_adetailer, + "hires_after_adetailer": hires_after_adetailer, + "hires_schedule_type": hires_schedule_type, + "hires_guidance_scale": hires_guidance_scale, + "ip_adapter_image": params_ip_img, + "ip_adapter_mask": params_ip_msk, + "ip_adapter_model": params_ip_model, + "ip_adapter_mode": params_ip_mode, + "ip_adapter_scale": params_ip_scale, + } + + # kwargs for diffusers pipeline + if guidance_rescale: + pipe_params["guidance_rescale"] = guidance_rescale + + self.model.device = torch.device("cuda:0") + if hasattr(self.model.pipe, "transformer") and loras_list != ["None"] * self.model.num_loras: + self.model.pipe.transformer.to(self.model.device) + print("transformer to cuda") + + actual_progress = 0 + info_images = gr.update() + for img, [seed, image_path, metadata] in self.model(**pipe_params): + info_state = progress_step_bar(actual_progress, steps) + actual_progress += concurrency + if image_path: + info_images = f"Seeds: {str(seed)}" + if vae_msg: + info_images = info_images + "
" + vae_msg + + if "Cannot copy out of meta tensor; no data!" in self.model.last_lora_error: + msg_ram = "Unable to process the LoRAs due to high RAM usage; please try again later." + print(msg_ram) + msg_lora += f"
{msg_ram}" + + for status, lora in zip(self.model.lora_status, self.model.lora_memory): + if status: + msg_lora += f"
Loaded: {lora}" + elif status is not None: + msg_lora += f"
Error with: {lora}" + + if msg_lora: + info_images += msg_lora + + info_images = info_images + "
" + "GENERATION DATA:
" + escape_html(metadata[-1]) + "
-------
" + + download_links = "
".join( + [ + f'Download Image {i + 1}' + for i, path in enumerate(image_path) + ] + ) + if save_generated_images: + info_images += f"
{download_links}" + +## BEGIN MOD + img = save_images(img, metadata) +## END MOD + + info_state = "COMPLETE" + + yield info_state, img, info_images + + +def dynamic_gpu_duration(func, duration, *args): + + @spaces.GPU(duration=duration) + def wrapped_func(): + yield from func(*args) + + return wrapped_func() + + +@spaces.GPU +def dummy_gpu(): + return None + + +def sd_gen_generate_pipeline(*args): + gpu_duration_arg = int(args[-1]) if args[-1] else 59 + verbose_arg = int(args[-2]) + load_lora_cpu = args[-3] + generation_args = args[:-3] + lora_list = [ + None if item == "None" or item == "" else item # MOD + for item in [args[7], args[9], args[11], args[13], args[15], args[17], args[19]] + ] + lora_status = [None] * sd_gen.model.num_loras + + msg_load_lora = "Updating LoRAs in GPU..." + if load_lora_cpu: + msg_load_lora = "Updating LoRAs in CPU..." + + if lora_list != sd_gen.model.lora_memory and lora_list != [None] * sd_gen.model.num_loras: + yield msg_load_lora, gr.update(), gr.update() + + # Load lora in CPU + if load_lora_cpu: + lora_status = sd_gen.model.load_lora_on_the_fly( + lora_A=lora_list[0], lora_scale_A=args[8], + lora_B=lora_list[1], lora_scale_B=args[10], + lora_C=lora_list[2], lora_scale_C=args[12], + lora_D=lora_list[3], lora_scale_D=args[14], + lora_E=lora_list[4], lora_scale_E=args[16], + lora_F=lora_list[5], lora_scale_F=args[18], + lora_G=lora_list[6], lora_scale_G=args[20], + ) + print(lora_status) + + sampler_name = args[21] + schedule_type_name = args[22] + _, _, msg_sampler = check_scheduler_compatibility( + sd_gen.model.class_name, sampler_name, schedule_type_name + ) + if msg_sampler: + gr.Warning(msg_sampler) + + if verbose_arg: + for status, lora in zip(lora_status, lora_list): + if status: + gr.Info(f"LoRA loaded in CPU: {lora}") + elif status is not None: + gr.Warning(f"Failed to load LoRA: {lora}") + + if lora_status == [None] * sd_gen.model.num_loras and sd_gen.model.lora_memory != [None] * sd_gen.model.num_loras and load_lora_cpu: + lora_cache_msg = ", ".join( + str(x) for x in sd_gen.model.lora_memory if x is not None + ) + gr.Info(f"LoRAs in cache: {lora_cache_msg}") + + msg_request = f"Requesting {gpu_duration_arg}s. of GPU time.\nModel: {sd_gen.model.base_model_id}" + if verbose_arg: + gr.Info(msg_request) + print(msg_request) + yield msg_request.replace("\n", "
"), gr.update(), gr.update() + + start_time = time.time() + + # yield from sd_gen.generate_pipeline(*generation_args) + yield from dynamic_gpu_duration( + sd_gen.generate_pipeline, + gpu_duration_arg, + *generation_args, + ) + + end_time = time.time() + execution_time = end_time - start_time + msg_task_complete = ( + f"GPU task complete in: {int(round(execution_time, 0) + 1)} seconds" + ) + + if verbose_arg: + gr.Info(msg_task_complete) + print(msg_task_complete) + + yield msg_task_complete, gr.update(), gr.update() + + +@spaces.GPU(duration=15) +def esrgan_upscale(image, upscaler_name, upscaler_size): + if image is None: return None + + from stablepy.diffusers_vanilla.utils import save_pil_image_with_metadata + from stablepy import UpscalerESRGAN + exif_image = extract_exif_data(image) -MAX_SEED = np.iinfo(np.int32).max -MAX_IMAGE_SIZE = 4096 -MIN_IMAGE_SIZE = 256 + url_upscaler = UPSCALER_DICT_GUI[upscaler_name] + directory_upscalers = 'upscalers' + os.makedirs(directory_upscalers, exist_ok=True) + if not os.path.exists(f"./upscalers/{url_upscaler.split('/')[-1]}"): + download_things(directory_upscalers, url_upscaler, HF_TOKEN) -css = """ -#container { margin: 0 auto; !important; } -#col-container { margin: 0 auto; !important; } -#result { max-width: 520px; max-height: 520px; margin: 0px auto; !important; } -.lora { min-width: 480px; !important; } + scaler_beta = UpscalerESRGAN(0, 0) + image_up = scaler_beta.upscale(image, upscaler_size, f"./upscalers/{url_upscaler.split('/')[-1]}") + + image_path = save_pil_image_with_metadata(image_up, f'{os.getcwd()}/up_images', exif_image) + + return image_path + + +# https://huggingface.co/spaces/BestWishYsh/ConsisID-preview-Space/discussions/1#674969a022b99c122af5d407 +dynamic_gpu_duration.zerogpu = True +sd_gen_generate_pipeline.zerogpu = True +sd_gen = GuiSD() + + +## BEGIN MOD +CSS =""" +.gradio-container, #main { width:100%; height:100%; max-width:100%; padding-left:0; padding-right:0; margin-left:0; margin-right:0; } +.contain { display:flex; flex-direction:column; } +#component-0 { width:100%; height:100%; } +#gallery { flex-grow:1; } +#load_model { height: 50px; } +.lora { min-width:480px; } +#model-info { text-align:center; } .title { font-size: 3em; align-items: center; text-align: center; } .info { align-items: center; text-align: center; } .desc [src$='#float'] { float: right; margin: 20px; } """ -with gr.Blocks(fill_width=True, elem_id="container", css=css, delete_cache=(60, 3600)) as demo: - gr.Markdown("# Votepurchase Multiple Model", elem_classes="title") - state = gr.State(value={}) - with gr.Tab("Image Generator"): - with gr.Column(elem_id="col-container"): +with gr.Blocks(theme='NoCrypt/miku@>=1.2.2', elem_id="main", fill_width=True, css=CSS, delete_cache=(60, 3600)) as app: + gr.Markdown("# 🧩 DiffuseCraft Mod", elem_classes="title") + gr.Markdown("This space is a modification of [r3gm's DiffuseCraft](https://huggingface.co/spaces/r3gm/DiffuseCraft).", elem_classes="info") + with gr.Column(): + with gr.Tab("Generation"): with gr.Row(): - prompt = gr.Text(label="Prompt", show_label=False, lines=1, max_lines=8, placeholder="Enter your prompt", container=False) - - with gr.Row(): - run_button = gr.Button("Run", variant="primary", scale=5) - run_translate_button = gr.Button("Run with LLM Enhance", variant="secondary", scale=3) - auto_trans = gr.Checkbox(label="Auto translate to English", value=False, scale=2) - - result = gr.Image(label="Result", elem_id="result", format="png", type="filepath", show_label=False, interactive=False, - show_download_button=True, show_share_button=False, container=True) - - with gr.Accordion("History", open=False): - history_gallery = gr.Gallery(label="History", columns=6, object_fit="contain", format="png", interactive=False, show_share_button=False, - show_download_button=True) - history_files = gr.Files(interactive=False, visible=False) - history_clear_button = gr.Button(value="Clear History", variant="secondary") - history_clear_button.click(lambda: ([], []), None, [history_gallery, history_files], queue=False, show_api=False) - - with gr.Accordion("Advanced Settings", open=True): - task = gr.Radio(label="Task", choices=SDXL_TASK, value=TASK_MODEL_LIST[0]) - with gr.Tab("Model & Prompt"): - with gr.Row(): - negative_prompt = gr.Text(label="Negative prompt", lines=1, max_lines=6, placeholder="Enter a negative prompt", show_copy_button=True, - value="(low quality, worst quality:1.2), very displeasing, watermark, signature, ugly") - with gr.Row(): - with gr.Column(scale=4): - model_name = gr.Dropdown(label="Model", info="You can enter a huggingface model repo_id to want to use.", - choices=get_diffusers_model_list(), value=get_diffusers_model_list()[0], - allow_custom_value=True, interactive=True, min_width=320) - model_info = gr.Markdown(elem_classes="info") - with gr.Column(scale=1): - model_detail = gr.Checkbox(label="Show detail of model in list", value=False) - with gr.Row(): - quality_selector = gr.Radio(label="Quality Tag Presets", interactive=True, choices=list(preset_quality.keys()), value="None", scale=3) - style_selector = gr.Radio(label="Style Presets", interactive=True, choices=list(preset_styles.keys()), value="None", scale=3) - recom_prompt = gr.Checkbox(label="Recommended prompt", value=True, scale=1) + with gr.Column(scale=1): - with gr.Tab("Generation Settings"): - with gr.Row(): - seed = gr.Slider(label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=0) - randomize_seed = gr.Checkbox(label="Randomize seed", value=True) - gpu_duration = gr.Slider(label="GPU time duration (seconds)", minimum=5, maximum=240, value=59) - with gr.Row(): - width = gr.Slider(label="Width", minimum=MIN_IMAGE_SIZE, maximum=MAX_IMAGE_SIZE, step=32, value=1024) # 832 - height = gr.Slider(label="Height", minimum=MIN_IMAGE_SIZE, maximum=MAX_IMAGE_SIZE, step=32, value=1024) # 1216 - guidance_scale = gr.Slider(label="Guidance scale", minimum=0.0, maximum=30.0, step=0.1, value=7) - guidance_rescale = gr.Slider(label="CFG rescale", value=0., step=0.01, minimum=0., maximum=1.5) - with gr.Row(): - num_inference_steps = gr.Slider(label="Number of inference steps", minimum=1, maximum=100, step=1, value=28) - pag_scale = gr.Slider(minimum=0.0, maximum=10.0, step=0.1, value=0.0, label="PAG Scale") - clip_skip = gr.Checkbox(value=True, label="Layer 2 Clip Skip") - free_u = gr.Checkbox(value=False, label="FreeU") - with gr.Row(): - sampler = gr.Dropdown(label="Sampler", choices=get_samplers(), value="Euler") - schedule_type = gr.Dropdown(label="Schedule type", choices=SCHEDULE_TYPE_OPTIONS, value=SCHEDULE_TYPE_OPTIONS[0]) - schedule_prediction_type = gr.Dropdown(label="Discrete Sampling Type", choices=SCHEDULE_PREDICTION_TYPE_OPTIONS, value=SCHEDULE_PREDICTION_TYPE_OPTIONS[0]) - vae_model = gr.Dropdown(label="VAE Model", choices=get_vaes(), value=get_vaes()[0]) - prompt_syntax = gr.Dropdown(label="Prompt Syntax", choices=PROMPT_W_OPTIONS, value=PROMPT_W_OPTIONS[1][1]) - - with gr.Tab("LoRA"): - def lora_dropdown(label, visible=True): - return gr.Dropdown(label=label, choices=get_all_lora_tupled_list(), value="", allow_custom_value=True, elem_classes="lora", min_width=320, visible=visible) - - def lora_scale_slider(label, visible=True): - return gr.Slider(minimum=-2, maximum=2, step=0.01, value=1.00, label=label, visible=visible) - - def lora_textbox(): - return gr.Textbox(label="", info="Example of prompt:", value="", show_copy_button=True, interactive=False, visible=False) + def update_task_options(model_name, task_name): + new_choices = MODEL_TYPE_TASK[get_model_type(valid_model_name(model_name))] + + if task_name not in new_choices: + task_name = "txt2img" + + return gr.update(value=task_name, choices=new_choices) - with gr.Row(): - with gr.Column(): - with gr.Row(): - lora1 = lora_dropdown("LoRA 1") - lora1_wt = lora_scale_slider("LoRA 1: weight") - with gr.Row(): - lora1_info = lora_textbox() - lora1_copy = gr.Button(value="Copy example to prompt", visible=False) - lora1_md = gr.Markdown(value="", visible=False) - with gr.Column(): + interface_mode_gui = gr.Radio(label="Quick settings", choices=["Simple", "Standard", "Fast", "LoRA"], value="Standard") + with gr.Accordion("Model and Task", open=False) as menu_model: + task_gui = gr.Dropdown(label="Task", choices=SDXL_TASK, value=TASK_MODEL_LIST[0]) + with gr.Group(): + model_name_gui = gr.Dropdown(label="Model", info="You can enter a huggingface model repo_id to want to use.", choices=get_tupled_model_list(model_list), value="votepurchase/animagine-xl-3.1", allow_custom_value=True) + model_info_gui = gr.Markdown(elem_classes="info") + with gr.Row(): + quick_model_type_gui = gr.Radio(label="Model Type", choices=["None", "Auto", "Animagine", "Pony"], value="Auto", interactive=True) + quick_genre_gui = gr.Radio(label="Genre", choices=["Anime", "Photo"], value="Anime", interactive=True) + quick_speed_gui = gr.Radio(label="Speed", choices=["Fast", "Standard", "Heavy"], value="Standard", interactive=True) + quick_aspect_gui = gr.Radio(label="Aspect Ratio", choices=["1:1", "3:4"], value="1:1", interactive=True) + with gr.Row(): + quality_selector_gui = gr.Dropdown(label="Quality Tags Presets", interactive=True, choices=list(preset_quality.keys()), value="None") + style_selector_gui = gr.Dropdown(label="Style Preset", interactive=True, choices=list(preset_styles.keys()), value="None") + sampler_selector_gui = gr.Dropdown(label="Sampler Quick Settings", interactive=True, choices=list(preset_sampler_setting.keys()), value="None") + optimization_gui = gr.Dropdown(label="Optimization for SDXL", choices=list(optimization_list.keys()), value="None", interactive=True) + with gr.Group(): + with gr.Accordion("Prompt from Image", open=False) as menu_from_image: + input_image_gui = gr.Image(label="Input image", type="pil", sources=["upload", "clipboard"], height=256) + with gr.Accordion(label="Advanced options", open=False): + with gr.Row(): + general_threshold_gui = gr.Slider(label="Threshold", minimum=0.0, maximum=1.0, value=0.3, step=0.01, interactive=True) + character_threshold_gui = gr.Slider(label="Character threshold", minimum=0.0, maximum=1.0, value=0.8, step=0.01, interactive=True) + with gr.Row(): + tag_type_gui = gr.Radio(label="Convert tags to", info="danbooru for Animagine, e621 for Pony.", choices=["danbooru", "e621"], value="danbooru") + recom_prompt_gui = gr.Radio(label="Insert reccomended prompt", choices=["None", "Animagine", "Pony"], value="None", interactive=True) + keep_tags_gui = gr.Radio(label="Remove tags leaving only the following", choices=["body", "dress", "all"], value="all") + image_algorithms = gr.CheckboxGroup(["Use WD Tagger"], label="Algorithms", value=["Use WD Tagger"], visible=False) + generate_from_image_btn_gui = gr.Button(value="GENERATE TAGS FROM IMAGE") + prompt_gui = gr.Textbox(lines=6, placeholder="1girl, solo, ...", label="Prompt", show_copy_button=True) + with gr.Accordion("Negative prompt, etc.", open=False) as menu_negative: + neg_prompt_gui = gr.Textbox(lines=3, placeholder="Enter Neg prompt", label="Negative prompt", value="lowres, bad anatomy, bad hands, missing fingers, extra digit, fewer digits, worst quality, low quality, very displeasing, (bad)", show_copy_button=True) + translate_prompt_button = gr.Button(value="Translate prompt to English", size="sm", variant="secondary") with gr.Row(): - lora2 = lora_dropdown("LoRA 2") - lora2_wt = lora_scale_slider("LoRA 2: weight") + insert_prompt_gui = gr.Radio(label="Insert reccomended positive / negative prompt", choices=["None", "Auto", "Animagine", "Pony"], value="Auto", interactive=True) + prompt_type_gui = gr.Radio(label="Convert tags to", choices=["danbooru", "e621"], value="e621", visible=False) + prompt_type_button = gr.Button(value="Convert prompt to Pony e621 style", size="sm", variant="secondary") with gr.Row(): - lora2_info = lora_textbox() - lora2_copy = gr.Button(value="Copy example to prompt", visible=False) - lora2_md = gr.Markdown(value="", visible=False) + character_dbt = gr.Textbox(lines=1, placeholder="kafuu chino, ...", label="Character names") + series_dbt = gr.Textbox(lines=1, placeholder="Is the order a rabbit?, ...", label="Series names") + random_character_gui = gr.Button(value="Random character 🎲", size="sm", variant="secondary") + model_name_dbt = gr.Dropdown(label="Model", choices=list(V2_ALL_MODELS.keys()), value=list(V2_ALL_MODELS.keys())[0], visible=False) + aspect_ratio_dbt = gr.Radio(label="Aspect ratio", choices=list(V2_ASPECT_RATIO_OPTIONS), value="square", visible=False) + length_dbt = gr.Radio(label="Length", choices=list(V2_LENGTH_OPTIONS), value="very_long", visible=False) + identity_dbt = gr.Radio(label="Keep identity", choices=list(V2_IDENTITY_OPTIONS), value="lax", visible=False) + ban_tags_dbt = gr.Textbox(label="Ban tags", placeholder="alternate costumen, ...", value="futanari, censored, furry, furrification", visible=False) + copy_button_dbt = gr.Button(value="Copy to clipboard", visible=False) + rating_dbt = gr.Radio(label="Rating", choices=list(V2_RATING_OPTIONS), value="sfw") + generate_db_random_button = gr.Button(value="EXTEND PROMPT 🎲") + with gr.Row(): + translate_prompt_gui = gr.Button(value="Translate Prompt 📝", variant="secondary", size="sm") + set_random_seed = gr.Button(value="Seed 🎲", variant="secondary", size="sm") + set_params_gui = gr.Button(value="Params ↙️", variant="secondary", size="sm") + clear_prompt_gui = gr.Button(value="Clear 🗑️", variant="secondary", size="sm") + + generate_button = gr.Button(value="GENERATE IMAGE", size="lg", variant="primary") + + model_name_gui.change( + update_task_options, + [model_name_gui, task_gui], + [task_gui], + ) + + load_model_gui = gr.HTML(elem_id="load_model", elem_classes="contain") + + result_images = gr.Gallery( + label="Generated images", + show_label=False, + elem_id="gallery", + #columns=[2], + columns=[1], + #rows=[2], + rows=[1], + object_fit="contain", + # height="auto", + interactive=False, + preview=False, + show_share_button=False, + show_download_button=True, + selected_index=50, + format="png", + ) + + result_images_files = gr.Files(interactive=False, visible=False) + + actual_task_info = gr.HTML() + + with gr.Accordion("History", open=False): + history_gallery = gr.Gallery(label="History", columns=6, object_fit="contain", format="png", interactive=False, show_share_button=False, + show_download_button=True) + history_files = gr.Files(interactive=False, visible=False) + history_clear_button = gr.Button(value="Clear History", variant="secondary") + history_clear_button.click(lambda: ([], []), None, [history_gallery, history_files], queue=False, show_api=False) + + with gr.Row(equal_height=False, variant="default"): + gpu_duration_gui = gr.Number(minimum=5, maximum=240, value=59, show_label=False, container=False, info="GPU time duration (seconds)") with gr.Column(): + verbose_info_gui = gr.Checkbox(value=False, container=False, label="Status info") + load_lora_cpu_gui = gr.Checkbox(value=False, container=False, label="Load LoRAs on CPU") + + with gr.Column(scale=1): + with gr.Accordion("Generation settings", open=False, visible=True) as menu_gen: + with gr.Row(): + img_width_gui = gr.Slider(minimum=64, maximum=4096, step=8, value=1024, label="Img Width") + img_height_gui = gr.Slider(minimum=64, maximum=4096, step=8, value=1024, label="Img Height") + steps_gui = gr.Slider(minimum=1, maximum=100, step=1, value=28, label="Steps") + cfg_gui = gr.Slider(minimum=0, maximum=30, step=0.5, value=7.0, label="CFG") + guidance_rescale_gui = gr.Slider(label="CFG rescale:", value=0., step=0.01, minimum=0., maximum=1.5) + with gr.Row(): + seed_gui = gr.Number(minimum=-1, maximum=2**32-1, value=-1, label="Seed") + pag_scale_gui = gr.Slider(minimum=0.0, maximum=10.0, step=0.1, value=0.0, label="PAG Scale") + num_images_gui = gr.Slider(minimum=1, maximum=5, step=1, value=1, label="Images") + clip_skip_gui = gr.Checkbox(value=False, label="Layer 2 Clip Skip") + free_u_gui = gr.Checkbox(value=False, label="FreeU") + with gr.Row(): + sampler_gui = gr.Dropdown(label="Sampler", choices=scheduler_names, value="Euler") + schedule_type_gui = gr.Dropdown(label="Schedule type", choices=SCHEDULE_TYPE_OPTIONS, value=SCHEDULE_TYPE_OPTIONS[0]) + schedule_prediction_type_gui = gr.Dropdown(label="Discrete Sampling Type", choices=SCHEDULE_PREDICTION_TYPE_OPTIONS, value=SCHEDULE_PREDICTION_TYPE_OPTIONS[0]) + vae_model_gui = gr.Dropdown(label="VAE Model", choices=vae_model_list, value=vae_model_list[0]) + prompt_syntax_gui = gr.Dropdown(label="Prompt Syntax", choices=PROMPT_W_OPTIONS, value=PROMPT_W_OPTIONS[1][1]) + + with gr.Row(equal_height=False): + + def run_set_params_gui(base_prompt, name_model): + valid_receptors = { # default values + "prompt": gr.update(value=base_prompt), + "neg_prompt": gr.update(value=""), + "Steps": gr.update(value=30), + "width": gr.update(value=1024), + "height": gr.update(value=1024), + "Seed": gr.update(value=-1), + "Sampler": gr.update(value="Euler"), + "CFG scale": gr.update(value=7.), # cfg + "Clip skip": gr.update(value=True), + "Model": gr.update(value=name_model), + "Schedule type": gr.update(value="Automatic"), + "PAG": gr.update(value=.0), + "FreeU": gr.update(value=False), + } + valid_keys = list(valid_receptors.keys()) + + parameters = extract_parameters(base_prompt) + # print(parameters) + + if "Sampler" in parameters: + value_sampler = parameters["Sampler"] + for s_type in SCHEDULE_TYPE_OPTIONS: + if s_type in value_sampler: + value_sampler = value_sampler.replace(s_type, "").strip() + parameters["Sampler"] = value_sampler + parameters["Schedule type"] = s_type + + for key, val in parameters.items(): + # print(val) + if key in valid_keys: + try: + if key == "Sampler": + if val not in scheduler_names: + continue + if key == "Schedule type": + if val not in SCHEDULE_TYPE_OPTIONS: + val = "Automatic" + elif key == "Clip skip": + if "," in str(val): + val = val.replace(",", "") + if int(val) >= 2: + val = True + if key == "prompt": + if ">" in val and "<" in val: + val = re.sub(r'<[^>]+>', '', val) + print("Removed LoRA written in the prompt") + if key in ["prompt", "neg_prompt"]: + val = re.sub(r'\s+', ' ', re.sub(r',+', ',', val)).strip() + if key in ["Steps", "width", "height", "Seed"]: + val = int(val) + if key == "FreeU": + val = True + if key in ["CFG scale", "PAG"]: + val = float(val) + if key == "Model": + filtered_models = [m for m in model_list if val in m] + if filtered_models: + val = filtered_models[0] + else: + val = name_model + if key == "Seed": + continue + valid_receptors[key] = gr.update(value=val) + # print(val, type(val)) + # print(valid_receptors) + except Exception as e: + print(str(e)) + return [value for value in valid_receptors.values()] + + set_params_gui.click( + run_set_params_gui, [prompt_gui, model_name_gui], [ + prompt_gui, + neg_prompt_gui, + steps_gui, + img_width_gui, + img_height_gui, + seed_gui, + sampler_gui, + cfg_gui, + clip_skip_gui, + model_name_gui, + schedule_type_gui, + pag_scale_gui, + free_u_gui, + ], + ) + + def run_clear_prompt_gui(): + return gr.update(value=""), gr.update(value="") + clear_prompt_gui.click( + run_clear_prompt_gui, [], [prompt_gui, neg_prompt_gui] + ) + + def run_set_random_seed(): + return -1 + set_random_seed.click( + run_set_random_seed, [], seed_gui + ) + + with gr.Accordion("LoRA", open=False, visible=True) as menu_lora: + def lora_dropdown(label, visible=True): + return gr.Dropdown(label=label, choices=get_all_lora_tupled_list(), value="", allow_custom_value=True, elem_classes="lora", min_width=320, visible=visible) + + def lora_scale_slider(label, visible=True): + return gr.Slider(minimum=-2, maximum=2, step=0.01, value=1.00, label=label, visible=visible) + + def lora_textbox(label): + return gr.Textbox(label=label, info="Example of prompt:", value="None", show_copy_button=True, interactive=False, visible=False) + + with gr.Row(): + with gr.Column(): + lora1_gui = lora_dropdown("LoRA1") + lora_scale_1_gui = lora_scale_slider("LoRA Scale 1") + with gr.Row(): + with gr.Group(): + lora1_info_gui = lora_textbox("LoRA1 prompts") + lora1_copy_gui = gr.Button(value="Copy example to prompt", visible=False) + lora1_desc_gui = gr.Markdown(value="", visible=False) + with gr.Column(): + lora2_gui = lora_dropdown("LoRA2") + lora_scale_2_gui = lora_scale_slider("LoRA Scale 2") + with gr.Row(): + with gr.Group(): + lora2_info_gui = lora_textbox("LoRA2 prompts") + lora2_copy_gui = gr.Button(value="Copy example to prompt", visible=False) + lora2_desc_gui = gr.Markdown(value="", visible=False) + with gr.Column(): + lora3_gui = lora_dropdown("LoRA3") + lora_scale_3_gui = lora_scale_slider("LoRA Scale 3") + with gr.Row(): + with gr.Group(): + lora3_info_gui = lora_textbox("LoRA3 prompts") + lora3_copy_gui = gr.Button(value="Copy example to prompt", visible=False) + lora3_desc_gui = gr.Markdown(value="", visible=False) + with gr.Column(): + lora4_gui = lora_dropdown("LoRA4") + lora_scale_4_gui = lora_scale_slider("LoRA Scale 4") + with gr.Row(): + with gr.Group(): + lora4_info_gui = lora_textbox("LoRA4 prompts") + lora4_copy_gui = gr.Button(value="Copy example to prompt", visible=False) + lora4_desc_gui = gr.Markdown(value="", visible=False) + with gr.Column(): + lora5_gui = lora_dropdown("LoRA5") + lora_scale_5_gui = lora_scale_slider("LoRA Scale 5") + with gr.Row(): + with gr.Group(): + lora5_info_gui = lora_textbox("LoRA5 prompts") + lora5_copy_gui = gr.Button(value="Copy example to prompt", visible=False) + lora5_desc_gui = gr.Markdown(value="", visible=False) + with gr.Column(): + lora6_gui = lora_dropdown("LoRA6", visible=False) + lora_scale_6_gui = lora_scale_slider("LoRA Scale 6", visible=False) + with gr.Row(): + with gr.Group(): + lora6_info_gui = lora_textbox("LoRA6 prompts") + lora6_copy_gui = gr.Button(value="Copy example to prompt", visible=False) + lora6_desc_gui = gr.Markdown(value="", visible=False) + with gr.Column(): + lora7_gui = lora_dropdown("LoRA7", visible=False) + lora_scale_7_gui = lora_scale_slider("LoRA Scale 7", visible=False) + with gr.Row(): + with gr.Group(): + lora7_info_gui = lora_textbox("LoRA7 prompts") + lora7_copy_gui = gr.Button(value="Copy example to prompt", visible=False) + lora7_desc_gui = gr.Markdown(value="", visible=False) + with gr.Accordion("From URL", open=True, visible=True): with gr.Row(): - lora3 = lora_dropdown("LoRA 3") - lora3_wt = lora_scale_slider("LoRA 3: weight") + search_civitai_basemodel_lora = gr.CheckboxGroup(label="Search LoRA for", choices=CIVITAI_BASEMODEL, value=["Pony", "Illustrious", "SDXL 1.0"]) + search_civitai_sort_lora = gr.Radio(label="Sort", choices=CIVITAI_SORT, value="Highest Rated") + search_civitai_period_lora = gr.Radio(label="Period", choices=CIVITAI_PERIOD, value="AllTime") with gr.Row(): - lora3_info = lora_textbox() - lora3_copy = gr.Button(value="Copy example to prompt", visible=False) - lora3_md = gr.Markdown(value="", visible=False) - with gr.Column(): + search_civitai_query_lora = gr.Textbox(label="Query", placeholder="oomuro sakurako...", lines=1) + search_civitai_tag_lora = gr.Dropdown(label="Tag", choices=get_civitai_tag(), value=get_civitai_tag()[0], allow_custom_value=True) + search_civitai_user_lora = gr.Textbox(label="Username", lines=1) + search_civitai_button_lora = gr.Button("Search on Civitai") + search_civitai_desc_lora = gr.Markdown(value="", visible=False, elem_classes="desc") + with gr.Accordion("Select from Gallery", open=False): + search_civitai_gallery_lora = gr.Gallery([], label="Results", allow_preview=False, columns=5, show_share_button=False, interactive=False) + search_civitai_result_lora = gr.Dropdown(label="Search Results", choices=[("", "")], value="", allow_custom_value=True, visible=False) with gr.Row(): - lora4 = lora_dropdown("LoRA 4") - lora4_wt = lora_scale_slider("LoRA 4: weight") + text_lora = gr.Textbox(label="LoRA's download URL", placeholder="https://civitai.com/api/download/models/28907", info="It has to be .safetensors files, and you can also download them from Hugging Face.", lines=1, scale=4) + romanize_text = gr.Checkbox(value=False, label="Transliterate name", scale=1, visible=False) + button_lora = gr.Button("Get and Refresh the LoRA Lists") + new_lora_status = gr.HTML() + with gr.Accordion("From Local", open=True, visible=True): + file_output_lora = gr.File(label="Uploaded LoRA", file_types=['.ckpt', '.pt', '.pth', '.safetensors', '.bin'], file_count="multiple", interactive=False, visible=False) + upload_button_lora = gr.UploadButton(label="Upload LoRA from your disk (very slow)", file_types=['.ckpt', '.pt', '.pth', '.safetensors', '.bin'], file_count="multiple") + + with gr.Column() as menu_advanced: + with gr.Accordion("Hires fix", open=False, visible=True) as menu_hires: + upscaler_model_path_gui = gr.Dropdown(label="Upscaler", choices=UPSCALER_KEYS, value=UPSCALER_KEYS[0]) with gr.Row(): - lora4_info = lora_textbox() - lora4_copy = gr.Button(value="Copy example to prompt", visible=False) - lora4_md = gr.Markdown(value="", visible=False) - with gr.Column(): + upscaler_increases_size_gui = gr.Slider(minimum=1.1, maximum=6., step=0.1, value=1.0, label="Upscale by") + esrgan_tile_gui = gr.Slider(minimum=0, value=100, maximum=500, step=1, label="ESRGAN Tile") + esrgan_tile_overlap_gui = gr.Slider(minimum=1, maximum=200, step=1, value=10, label="ESRGAN Tile Overlap") with gr.Row(): - lora5 = lora_dropdown("LoRA 5") - lora5_wt = lora_scale_slider("LoRA 5: weight") + hires_steps_gui = gr.Slider(minimum=0, value=30, maximum=100, step=1, label="Hires Steps") + hires_denoising_strength_gui = gr.Slider(minimum=0.1, maximum=1.0, step=0.01, value=0.55, label="Hires Denoising Strength") + hires_sampler_gui = gr.Dropdown(label="Hires Sampler", choices=POST_PROCESSING_SAMPLER, value=POST_PROCESSING_SAMPLER[0]) + hires_schedule_list = ["Use same schedule type"] + SCHEDULE_TYPE_OPTIONS + hires_schedule_type_gui = gr.Dropdown(label="Hires Schedule type", choices=hires_schedule_list, value=hires_schedule_list[0]) + hires_guidance_scale_gui = gr.Slider(minimum=-1., maximum=30., step=0.5, value=-1., label="Hires CFG", info="If the value is -1, the main CFG will be used") + hires_prompt_gui = gr.Textbox(label="Hires Prompt", placeholder="Main prompt will be use", lines=3) + hires_negative_prompt_gui = gr.Textbox(label="Hires Negative Prompt", placeholder="Main negative prompt will be use", lines=3) + + with gr.Accordion("Detailfix", open=False, visible=True) as menu_detail: with gr.Row(): - lora5_info = lora_textbox() - lora5_copy = gr.Button(value="Copy example to prompt", visible=False) - lora5_md = gr.Markdown(value="", visible=False) - with gr.Column(): + + # Adetailer Inpaint Only + adetailer_inpaint_only_gui = gr.Checkbox(label="Inpaint only", value=True) + + # Adetailer Verbose + adetailer_verbose_gui = gr.Checkbox(label="Verbose", value=False) + + # Adetailer Sampler + adetailer_sampler_gui = gr.Dropdown(label="Adetailer sampler:", choices=POST_PROCESSING_SAMPLER, value=POST_PROCESSING_SAMPLER[0]) + + with gr.Accordion("Detailfix A", open=True, visible=True): + # Adetailer A + adetailer_active_a_gui = gr.Checkbox(label="Enable Adetailer A", value=False) + prompt_ad_a_gui = gr.Textbox(label="Main prompt", placeholder="Main prompt will be use", lines=3) + negative_prompt_ad_a_gui = gr.Textbox(label="Negative prompt", placeholder="Main negative prompt will be use", lines=3) + with gr.Row(): + strength_ad_a_gui = gr.Number(label="Strength:", value=0.35, step=0.01, minimum=0.01, maximum=1.0) + face_detector_ad_a_gui = gr.Checkbox(label="Face detector", value=False) + person_detector_ad_a_gui = gr.Checkbox(label="Person detector", value=True) + hand_detector_ad_a_gui = gr.Checkbox(label="Hand detector", value=False) + with gr.Row(): + mask_dilation_a_gui = gr.Number(label="Mask dilation:", value=4, minimum=1) + mask_blur_a_gui = gr.Number(label="Mask blur:", value=4, minimum=1) + mask_padding_a_gui = gr.Number(label="Mask padding:", value=32, minimum=1) + + with gr.Accordion("Detailfix B", open=True, visible=True): + # Adetailer B + adetailer_active_b_gui = gr.Checkbox(label="Enable Adetailer B", value=False) + prompt_ad_b_gui = gr.Textbox(label="Main prompt", placeholder="Main prompt will be use", lines=3) + negative_prompt_ad_b_gui = gr.Textbox(label="Negative prompt", placeholder="Main negative prompt will be use", lines=3) + with gr.Row(): + strength_ad_b_gui = gr.Number(label="Strength:", value=0.35, step=0.01, minimum=0.01, maximum=1.0) + face_detector_ad_b_gui = gr.Checkbox(label="Face detector", value=False) + person_detector_ad_b_gui = gr.Checkbox(label="Person detector", value=True) + hand_detector_ad_b_gui = gr.Checkbox(label="Hand detector", value=False) + with gr.Row(): + mask_dilation_b_gui = gr.Number(label="Mask dilation:", value=4, minimum=1) + mask_blur_b_gui = gr.Number(label="Mask blur:", value=4, minimum=1) + mask_padding_b_gui = gr.Number(label="Mask padding:", value=32, minimum=1) + + with gr.Accordion("Textual inversion", open=False, visible=True) as menu_ti: + active_textual_inversion_gui = gr.Checkbox(value=False, label="Active Textual Inversion in prompt") + use_textual_inversion_gui = gr.CheckboxGroup(choices=get_embed_list(get_model_pipeline(model_name_gui.value)) if active_textual_inversion_gui.value else [], value=None, label="Use Textual Invertion in prompt") + def update_textual_inversion_gui(active_textual_inversion_gui, model_name_gui): + return gr.update(choices=get_embed_list(get_model_pipeline(model_name_gui)) if active_textual_inversion_gui else []) + active_textual_inversion_gui.change(update_textual_inversion_gui, [active_textual_inversion_gui, model_name_gui], [use_textual_inversion_gui]) + model_name_gui.change(update_textual_inversion_gui, [active_textual_inversion_gui, model_name_gui], [use_textual_inversion_gui]) + + with gr.Accordion("ControlNet / Img2img / Inpaint", open=False, visible=True) as menu_i2i: with gr.Row(): - lora6 = lora_dropdown("LoRA 6", visible=False) - lora6_wt = lora_scale_slider("LoRA 6: weight", visible=False) + image_control = gr.Image(label="Image ControlNet/Inpaint/Img2img", type="filepath") + image_mask_gui = gr.Image(label="Image Mask", type="filepath") with gr.Row(): - lora6_info = lora_textbox() - lora6_copy = gr.Button(value="Copy example to prompt", visible=False) - lora6_md = gr.Markdown(value="", visible=False) - with gr.Column(): + strength_gui = gr.Slider( + minimum=0.01, maximum=1.0, step=0.01, value=0.55, label="Strength", + info="This option adjusts the level of changes for img2img and inpainting." + ) + image_resolution_gui = gr.Slider( + minimum=64, maximum=2048, step=64, value=1024, label="Image Resolution", + info="The maximum proportional size of the generated image based on the uploaded image." + ) with gr.Row(): - lora7 = lora_dropdown("LoRA 7", visible=False) - lora7_wt = lora_scale_slider("LoRA 7: weight", visible=False) + controlnet_model_gui = gr.Dropdown(label="ControlNet model", choices=DIFFUSERS_CONTROLNET_MODEL, value=DIFFUSERS_CONTROLNET_MODEL[0]) + control_net_output_scaling_gui = gr.Slider(minimum=0, maximum=5.0, step=0.1, value=1, label="ControlNet Output Scaling in UNet") + control_net_start_threshold_gui = gr.Slider(minimum=0, maximum=1, step=0.01, value=0, label="ControlNet Start Threshold (%)") + control_net_stop_threshold_gui = gr.Slider(minimum=0, maximum=1, step=0.01, value=1, label="ControlNet Stop Threshold (%)") with gr.Row(): - lora7_info = lora_textbox() - lora7_copy = gr.Button(value="Copy example to prompt", visible=False) - lora7_md = gr.Markdown(value="", visible=False) - with gr.Accordion("From URL", open=True, visible=True): - with gr.Row(): - lora_search_civitai_basemodel = gr.CheckboxGroup(label="Search LoRA for", choices=CIVITAI_BASEMODEL, value=["Pony", "Illustrious", "SDXL 1.0"]) - lora_search_civitai_sort = gr.Radio(label="Sort", choices=CIVITAI_SORT, value="Highest Rated") - lora_search_civitai_period = gr.Radio(label="Period", choices=CIVITAI_PERIOD, value="AllTime") - with gr.Row(): - lora_search_civitai_query = gr.Textbox(label="Query", placeholder="oomuro sakurako...", lines=1) - lora_search_civitai_tag = gr.Dropdown(label="Tag", choices=get_civitai_tag(), value=get_civitai_tag()[0], allow_custom_value=True) - lora_search_civitai_user = gr.Textbox(label="Username", lines=1) - lora_search_civitai_submit = gr.Button("Search on Civitai") - with gr.Row(): - lora_search_civitai_json = gr.JSON(value={}, visible=False) - lora_search_civitai_desc = gr.Markdown(value="", visible=False, elem_classes="desc") - with gr.Accordion("Select from Gallery", open=False): - lora_search_civitai_gallery = gr.Gallery([], label="Results", allow_preview=False, columns=5, show_share_button=False, interactive=False) - lora_search_civitai_result = gr.Dropdown(label="Search Results", choices=[("", "")], value="", allow_custom_value=True, visible=False) - lora_download_url = gr.Textbox(label="LoRA's download URL", placeholder="https://civitai.com/api/download/models/28907", info="It has to be .safetensors files, and you can also download them from Hugging Face.", lines=1) - lora_download = gr.Button("Get and set LoRA and apply to prompt") - - with gr.Tab("ControlNet / Img2img / Inpaint"): - with gr.Row(): - image_control = gr.Image(label="Image ControlNet / Inpaint / Img2img", type="filepath", height=384, sources=["upload", "clipboard", "webacam"], show_share_button=False) - #image_control = gr.ImageEditor(label="Image ControlNet / Inpaint / Img2img", type="filepath", sources=["upload", "clipboard", "webcam"], image_mode='RGB', - # show_share_button=False, show_fullscreen_button=False, layers=False, canvas_size=(384, 384), width=384, height=512, - # brush=gr.Brush(colors=["#FFFFFF"], color_mode="fixed", default_size=32), eraser=gr.Eraser(default_size="32")) - image_mask = gr.Image(label="Image Mask", type="filepath", height=384, sources=["upload", "clipboard"], show_share_button=False) - with gr.Row(): - strength = gr.Slider(minimum=0.01, maximum=1.0, step=0.01, value=0.55, label="Strength", - info="This option adjusts the level of changes for img2img and inpainting.") - image_resolution = gr.Slider(minimum=64, maximum=2048, step=64, value=1024, label="Image Resolution", - info="The maximum proportional size of the generated image based on the uploaded image.") - with gr.Row(): - controlnet_model = gr.Dropdown(label="ControlNet model", choices=DIFFUSERS_CONTROLNET_MODEL, value=DIFFUSERS_CONTROLNET_MODEL[0]) - control_net_output_scaling = gr.Slider(minimum=0, maximum=5.0, step=0.1, value=1, label="ControlNet Output Scaling in UNet") - control_net_start_threshold = gr.Slider(minimum=0, maximum=1, step=0.01, value=0, label="ControlNet Start Threshold (%)") - control_net_stop_threshold = gr.Slider(minimum=0, maximum=1, step=0.01, value=1, label="ControlNet Stop Threshold (%)") - with gr.Row(): - preprocessor_name = gr.Dropdown(label="Preprocessor Name", choices=TASK_AND_PREPROCESSORS["canny"]) - preprocess_resolution = gr.Slider(minimum=64, maximum=2048, step=64, value=512, label="Preprocessor Resolution") - low_threshold = gr.Slider(minimum=1, maximum=255, step=1, value=100, label="'CANNY' low threshold") - high_threshold = gr.Slider(minimum=1, maximum=255, step=1, value=200, label="'CANNY' high threshold") - with gr.Row(): - value_threshold = gr.Slider(minimum=1, maximum=2.0, step=0.01, value=0.1, label="'MLSD' Hough value threshold") - distance_threshold = gr.Slider(minimum=1, maximum=20.0, step=0.01, value=0.1, label="'MLSD' Hough distance threshold") - recolor_gamma_correction = gr.Number(minimum=0., maximum=25., value=1., step=0.001, label="'RECOLOR' gamma correction") - tile_blur_sigma = gr.Number(minimum=0, maximum=100, value=9, step=1, label="'TILE' blur sigma") - - with gr.Tab("IP-Adapter"): - IP_MODELS = sorted(list(set(IP_ADAPTERS_SD + IP_ADAPTERS_SDXL))) - MODE_IP_OPTIONS = ["original", "style", "layout", "style+layout"] - with gr.Row(): - with gr.Accordion("IP-Adapter 1", open=True, visible=True): - image_ip1 = gr.Image(label="IP Image", type="filepath", height=384, sources=["upload", "clipboard"], show_share_button=False) - mask_ip1 = gr.Image(label="IP Mask (optional)", type="filepath", height=384, sources=["upload", "clipboard"], show_share_button=False) + preprocessor_name_gui = gr.Dropdown(label="Preprocessor Name", choices=TASK_AND_PREPROCESSORS["canny"]) + preprocess_resolution_gui = gr.Slider(minimum=64, maximum=2048, step=64, value=512, label="Preprocessor Resolution") + low_threshold_gui = gr.Slider(minimum=1, maximum=255, step=1, value=100, label="'CANNY' low threshold") + high_threshold_gui = gr.Slider(minimum=1, maximum=255, step=1, value=200, label="'CANNY' high threshold") + + def change_preprocessor_choices(task): + task = TASK_STABLEPY[task] + if task in TASK_AND_PREPROCESSORS.keys(): + choices_task = TASK_AND_PREPROCESSORS[task] + else: + choices_task = TASK_AND_PREPROCESSORS["canny"] + return gr.update(choices=choices_task, value=choices_task[0]) + + task_gui.change( + change_preprocessor_choices, + [task_gui], + [preprocessor_name_gui], + ) + with gr.Row(): - model_ip1 = gr.Dropdown(value="plus_face", label="Model", choices=IP_MODELS) - mode_ip1 = gr.Dropdown(value="original", label="Mode", choices=MODE_IP_OPTIONS) + value_threshold_gui = gr.Slider(minimum=1, maximum=2.0, step=0.01, value=0.1, label="'MLSD' Hough value threshold") + distance_threshold_gui = gr.Slider(minimum=1, maximum=20.0, step=0.01, value=0.1, label="'MLSD' Hough distance threshold") + recolor_gamma_correction_gui = gr.Number(minimum=0., maximum=25., value=1., step=0.001, label="'RECOLOR' gamma correction") + tile_blur_sigma_gui = gr.Number(minimum=0, maximum=100, value=9, step=1, label="'TILE' blur sigma") + + with gr.Accordion("IP-Adapter", open=False, visible=True) as menu_ipa: + + IP_MODELS = sorted(list(set(IP_ADAPTERS_SD + IP_ADAPTERS_SDXL))) + MODE_IP_OPTIONS = ["original", "style", "layout", "style+layout"] + + with gr.Accordion("IP-Adapter 1", open=True, visible=True): + with gr.Row(): + image_ip1 = gr.Image(label="IP Image", type="filepath") + mask_ip1 = gr.Image(label="IP Mask", type="filepath") + with gr.Row(): + model_ip1 = gr.Dropdown(value="plus_face", label="Model", choices=IP_MODELS) + mode_ip1 = gr.Dropdown(value="original", label="Mode", choices=MODE_IP_OPTIONS) scale_ip1 = gr.Slider(minimum=0., maximum=2., step=0.01, value=0.7, label="Scale") - with gr.Accordion("IP-Adapter 2", open=True, visible=True): - image_ip2 = gr.Image(label="IP Image", type="filepath", height=384, sources=["upload", "clipboard"], show_share_button=False) - mask_ip2 = gr.Image(label="IP Mask (optional)", type="filepath", height=384, sources=["upload", "clipboard"], show_share_button=False) - with gr.Row(): - model_ip2 = gr.Dropdown(value="base", label="Model", choices=IP_MODELS) - mode_ip2 = gr.Dropdown(value="style", label="Mode", choices=MODE_IP_OPTIONS) + with gr.Accordion("IP-Adapter 2", open=True, visible=True): + with gr.Row(): + image_ip2 = gr.Image(label="IP Image", type="filepath") + mask_ip2 = gr.Image(label="IP Mask (optional)", type="filepath") + with gr.Row(): + model_ip2 = gr.Dropdown(value="base", label="Model", choices=IP_MODELS) + mode_ip2 = gr.Dropdown(value="style", label="Mode", choices=MODE_IP_OPTIONS) scale_ip2 = gr.Slider(minimum=0., maximum=2., step=0.01, value=0.7, label="Scale") - with gr.Tab("Inpaint Mask Maker"): - with gr.Row(): - with gr.Column(scale=2): - image_base = gr.ImageEditor(sources=["upload", "clipboard", "webcam"], - brush=gr.Brush(default_size="32", color_mode="fixed", colors=["rgba(0, 0, 0, 1)", "rgba(0, 0, 0, 0.1)", "rgba(255, 255, 255, 0.1)"]), - eraser=gr.Eraser(default_size="32"), show_share_button=False, show_fullscreen_button=False, - canvas_size=(384, 384), width=384, height=512) - invert_mask = gr.Checkbox(value=False, label="Invert mask") - cm_btn = gr.Button("Create mask") - with gr.Column(scale=1): - img_source = gr.Image(interactive=False, height=384, show_share_button=False) - img_result = gr.Image(label="Mask image", show_label=True, interactive=False, height=384, show_share_button=False) - cm_btn_send = gr.Button("Send to ControlNet / Img2img / Inpaint") - cm_btn_send_ip1 = gr.Button("Send to IP-Adapter 1") - cm_btn_send_ip2 = gr.Button("Send to IP-Adapter 2") - cm_btn.click(create_mask_now, [image_base, invert_mask], [img_source, img_result], queue=False, show_api=False) - def send_img(img_source, img_result): - return img_source, img_result - cm_btn_send.click(send_img, [img_source, img_result], [image_control, image_mask], queue=False, show_api=False) - cm_btn_send_ip1.click(send_img, [img_source, img_result], [image_ip1, mask_ip1], queue=False, show_api=False) - cm_btn_send_ip2.click(send_img, [img_source, img_result], [image_ip2, mask_ip2], queue=False, show_api=False) - - with gr.Tab("Hires fix"): - with gr.Row(): - upscaler_model_path = gr.Dropdown(label="Upscaler", choices=UPSCALER_KEYS, value=UPSCALER_KEYS[0]) - upscaler_increases_size = gr.Slider(minimum=1.1, maximum=4., step=0.1, value=1.2, label="Upscale by") - esrgan_tile = gr.Slider(minimum=0, value=0, maximum=500, step=1, label="ESRGAN Tile") - esrgan_tile_overlap = gr.Slider(minimum=1, maximum=200, step=1, value=8, label="ESRGAN Tile Overlap") - with gr.Row(): - hires_steps = gr.Slider(minimum=0, value=30, maximum=100, step=1, label="Hires Steps") - hires_denoising_strength = gr.Slider(minimum=0.1, maximum=1.0, step=0.01, value=0.55, label="Hires Denoising Strength") - hires_sampler = gr.Dropdown(label="Hires Sampler", choices=POST_PROCESSING_SAMPLER, value=POST_PROCESSING_SAMPLER[0]) - hires_schedule_list = ["Use same schedule type"] + SCHEDULE_TYPE_OPTIONS - hires_schedule_type = gr.Dropdown(label="Hires Schedule type", choices=hires_schedule_list, value=hires_schedule_list[0]) - hires_guidance_scale = gr.Slider(minimum=-1., maximum=30., step=0.5, value=-1., label="Hires CFG", info="If the value is -1, the main CFG will be used") - with gr.Row(): - hires_prompt = gr.Textbox(label="Hires Prompt", placeholder="Main prompt will be use", lines=3) - hires_negative_prompt = gr.Textbox(label="Hires Negative Prompt", placeholder="Main negative prompt will be use", lines=3) - - with gr.Tab("Detailfix"): - with gr.Row(): - # Adetailer Inpaint Only - adetailer_inpaint_only = gr.Checkbox(label="Inpaint only", value=True) - # Adetailer Verbose - adetailer_verbose = gr.Checkbox(label="Verbose", value=False) - # Adetailer Sampler - adetailer_sampler = gr.Dropdown(label="Adetailer sampler:", choices=POST_PROCESSING_SAMPLER, value=POST_PROCESSING_SAMPLER[0]) - with gr.Row(): - with gr.Accordion("Detailfix A", open=True, visible=True): - # Adetailer A - adetailer_active_a = gr.Checkbox(label="Enable Adetailer A", value=False) - prompt_ad_a = gr.Textbox(label="Main prompt", placeholder="Main prompt will be use", lines=3) - negative_prompt_ad_a = gr.Textbox(label="Negative prompt", placeholder="Main negative prompt will be use", lines=3) + with gr.Accordion("T2I adapter", open=False, visible=False) as menu_t2i: + t2i_adapter_preprocessor_gui = gr.Checkbox(value=True, label="T2i Adapter Preprocessor") with gr.Row(): - strength_ad_a = gr.Number(label="Strength:", value=0.35, step=0.01, minimum=0.01, maximum=1.0) - face_detector_ad_a = gr.Checkbox(label="Face detector", value=False) - person_detector_ad_a = gr.Checkbox(label="Person detector", value=True) - hand_detector_ad_a = gr.Checkbox(label="Hand detector", value=False) - with gr.Row(): - mask_dilation_a = gr.Number(label="Mask dilation:", value=4, minimum=1) - mask_blur_a = gr.Number(label="Mask blur:", value=4, minimum=1) - mask_padding_a = gr.Number(label="Mask padding:", value=32, minimum=1) - with gr.Accordion("Detailfix B", open=True, visible=True): - # Adetailer B - adetailer_active_b = gr.Checkbox(label="Enable Adetailer B", value=False) - prompt_ad_b = gr.Textbox(label="Main prompt", placeholder="Main prompt will be use", lines=3) - negative_prompt_ad_b = gr.Textbox(label="Negative prompt", placeholder="Main negative prompt will be use", lines=3) + adapter_conditioning_scale_gui = gr.Slider(minimum=0, maximum=5., step=0.1, value=1, label="Adapter Conditioning Scale") + adapter_conditioning_factor_gui = gr.Slider(minimum=0, maximum=1., step=0.01, value=0.55, label="Adapter Conditioning Factor (%)") + + with gr.Accordion("Styles", open=False, visible=True) as menu_styles: + + try: + style_names_found = sd_gen.model.STYLE_NAMES + except Exception: + style_names_found = STYLE_NAMES + + style_prompt_gui = gr.Dropdown( + style_names_found, + multiselect=True, + value=None, + label="Style Prompt", + interactive=True, + ) + style_json_gui = gr.File(label="Style JSON File") + style_button = gr.Button("Load styles") + + def load_json_style_file(json): + if not sd_gen.model: + gr.Info("First load the model") + return gr.update(value=None, choices=STYLE_NAMES) + + sd_gen.model.load_style_file(json) + gr.Info(f"{len(sd_gen.model.STYLE_NAMES)} styles loaded") + return gr.update(value=None, choices=sd_gen.model.STYLE_NAMES) + + style_button.click(load_json_style_file, [style_json_gui], [style_prompt_gui]) + + with gr.Accordion("Other settings", open=False, visible=True) as menu_other: with gr.Row(): - strength_ad_b = gr.Number(label="Strength:", value=0.35, step=0.01, minimum=0.01, maximum=1.0) - face_detector_ad_b = gr.Checkbox(label="Face detector", value=False) - person_detector_ad_b = gr.Checkbox(label="Person detector", value=True) - hand_detector_ad_b = gr.Checkbox(label="Hand detector", value=False) + save_generated_images_gui = gr.Checkbox(value=False, label="Save Generated Images") + filename_pattern_gui = gr.Textbox(label="Filename pattern", value="model,seed", placeholder="model,seed,sampler,schedule_type,img_width,img_height,guidance_scale,num_steps,vae,prompt_section,neg_prompt_section", lines=1) with gr.Row(): - mask_dilation_b = gr.Number(label="Mask dilation:", value=4, minimum=1) - mask_blur_b = gr.Number(label="Mask blur:", value=4, minimum=1) - mask_padding_b = gr.Number(label="Mask padding:", value=32, minimum=1) - - with gr.Tab("Textual inversion"): - active_textual_inversion = gr.Checkbox(value=False, label="Active Textual Inversion in prompt") - use_textual_inversion = gr.CheckboxGroup(choices=get_ti_choices(model_name.value) if active_textual_inversion.value else [], value=None, label="Use Textual Invertion in prompt") - - with gr.Tab("Translation Settings"): - chatbot = gr.Chatbot(render_markdown=False, visible=False) # component for auto-translation - chat_model = gr.Dropdown(choices=get_dolphin_models(), value=get_dolphin_models()[0][1], allow_custom_value=True, label="Model") - chat_model_info = gr.Markdown(value=get_dolphin_model_info(get_dolphin_models()[0][1]), label="Model info") - chat_format = gr.Dropdown(choices=get_llm_formats(), value=get_dolphin_model_format(get_dolphin_models()[0][1]), label="Message format") - with gr.Row(): - chat_tokens = gr.Slider(minimum=1, maximum=4096, value=512, step=1, label="Max tokens") - chat_temperature = gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature") - chat_topp = gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p") - chat_topk = gr.Slider(minimum=0, maximum=100, value=40, step=1, label="Top-k") - chat_rp = gr.Slider(minimum=0.0, maximum=2.0, value=1.1, step=0.1, label="Repetition penalty") - chat_sysmsg = gr.Textbox(value=get_dolphin_sysprompt(), label="System message") - - examples = gr.Examples( - examples = [ - ["souryuu asuka langley, 1girl, neon genesis evangelion, plugsuit, pilot suit, red bodysuit, sitting, crossing legs, black eye patch, cat hat, throne, symmetrical, looking down, from bottom, looking at viewer, outdoors"], - ["sailor moon, magical girl transformation, sparkles and ribbons, soft pastel colors, crescent moon motif, starry night sky background, shoujo manga style"], - ["kafuu chino, 1girl, solo"], - ["1girl"], - ["beautiful sunset"], - ], - inputs=[prompt], - cache_examples=False, + hires_before_adetailer_gui = gr.Checkbox(value=False, label="Hires Before Adetailer") + hires_after_adetailer_gui = gr.Checkbox(value=True, label="Hires After Adetailer") + generator_in_cpu_gui = gr.Checkbox(value=False, label="Generator in CPU") + + with gr.Accordion("More settings", open=False, visible=False): + loop_generation_gui = gr.Slider(minimum=1, value=1, label="Loop Generation") + retain_task_cache_gui = gr.Checkbox(value=True, label="Retain task model in cache") + leave_progress_bar_gui = gr.Checkbox(value=True, label="Leave Progress Bar") + disable_progress_bar_gui = gr.Checkbox(value=False, label="Disable Progress Bar") + display_images_gui = gr.Checkbox(value=False, label="Display Images") + image_previews_gui = gr.Checkbox(value=True, label="Image Previews") + image_storage_location_gui = gr.Textbox(value="./images", label="Image Storage Location") + retain_compel_previous_load_gui = gr.Checkbox(value=False, label="Retain Compel Previous Load") + retain_detailfix_model_previous_load_gui = gr.Checkbox(value=False, label="Retain Detailfix Model Previous Load") + retain_hires_model_previous_load_gui = gr.Checkbox(value=False, label="Retain Hires Model Previous Load") + xformers_memory_efficient_attention_gui = gr.Checkbox(value=False, label="Xformers Memory Efficient Attention") + + with gr.Accordion("Examples and help", open=True, visible=True) as menu_example: + gr.Examples( + examples=EXAMPLES_GUI, + fn=sd_gen.generate_pipeline, + inputs=[ + prompt_gui, + neg_prompt_gui, + num_images_gui, + steps_gui, + cfg_gui, + clip_skip_gui, + seed_gui, + sampler_gui, + img_height_gui, + img_width_gui, + model_name_gui, + ], + outputs=[load_model_gui, result_images, actual_task_info], + cache_examples=False, + #elem_id="examples", + ) + + gr.Markdown(RESOURCES) +## END MOD + + with gr.Tab("Inpaint mask maker", render=True): + + def create_mask_now(img, invert): + import numpy as np + import time + + time.sleep(0.5) + + transparent_image = img["layers"][0] + + # Extract the alpha channel + alpha_channel = np.array(transparent_image)[:, :, 3] + + # Create a binary mask by thresholding the alpha channel + binary_mask = alpha_channel > 1 + + if invert: + print("Invert") + # Invert the binary mask so that the drawn shape is white and the rest is black + binary_mask = np.invert(binary_mask) + + # Convert the binary mask to a 3-channel RGB mask + rgb_mask = np.stack((binary_mask,) * 3, axis=-1) + + # Convert the mask to uint8 + rgb_mask = rgb_mask.astype(np.uint8) * 255 + + return img["background"], rgb_mask + + with gr.Row(): + with gr.Column(scale=2): + # image_base = gr.ImageEditor(label="Base image", show_label=True, brush=gr.Brush(colors=["#000000"])) + image_base = gr.ImageEditor( + sources=["upload", "clipboard"], + # crop_size="1:1", + # enable crop (or disable it) + # transforms=["crop"], + brush=gr.Brush( + default_size="16", # or leave it as 'auto' + color_mode="fixed", # 'fixed' hides the user swatches and colorpicker, 'defaults' shows it + # default_color="black", # html names are supported + colors=[ + "rgba(0, 0, 0, 1)", # rgb(a) + "rgba(0, 0, 0, 0.1)", + "rgba(255, 255, 255, 0.1)", + # "hsl(360, 120, 120)" # in fact any valid colorstring + ] + ), + eraser=gr.Eraser(default_size="16") + ) + invert_mask = gr.Checkbox(value=False, label="Invert mask") + btn = gr.Button("Create mask") + with gr.Column(scale=1): + img_source = gr.Image(interactive=False) + img_result = gr.Image(label="Mask image", show_label=True, interactive=False) + btn_send = gr.Button("Send to the first tab") + + btn.click(create_mask_now, [image_base, invert_mask], [img_source, img_result]) + + def send_img(img_source, img_result): + return img_source, img_result + btn_send.click(send_img, [img_source, img_result], [image_control, image_mask_gui]) + + with gr.Tab("PNG Info"): + with gr.Row(): + with gr.Column(): + image_metadata = gr.Image(label="Image with metadata", type="pil", sources=["upload"]) + + with gr.Column(): + result_metadata = gr.Textbox(label="Metadata", show_label=True, show_copy_button=True, interactive=False, container=True, max_lines=99) + + image_metadata.change( + fn=extract_exif_data, + inputs=[image_metadata], + outputs=[result_metadata], + ) + + with gr.Tab("Upscaler"): + with gr.Row(): + with gr.Column(): + image_up_tab = gr.Image(label="Image", type="pil", sources=["upload"]) + upscaler_tab = gr.Dropdown(label="Upscaler", choices=UPSCALER_KEYS[9:], value=UPSCALER_KEYS[11]) + upscaler_size_tab = gr.Slider(minimum=1., maximum=4., step=0.1, value=1.1, label="Upscale by") + generate_button_up_tab = gr.Button(value="START UPSCALE", variant="primary") + + with gr.Column(): + result_up_tab = gr.Image(label="Result", type="pil", interactive=False, format="png") + + generate_button_up_tab.click( + fn=esrgan_upscale, + inputs=[image_up_tab, upscaler_tab, upscaler_size_tab], + outputs=[result_up_tab], + ) + + with gr.Tab("Preprocessor", render=True): + preprocessor_tab() + +## BEGIN MOD + interface_mode_gui.change( + change_interface_mode, + [interface_mode_gui], + [menu_model, menu_from_image, menu_negative, menu_gen, menu_hires, menu_lora, menu_advanced, + menu_example, task_gui, quick_speed_gui], + queue=False, ) + model_name_gui.change(get_t2i_model_info, [model_name_gui], [model_info_gui], queue=False) + translate_prompt_gui.click(translate_to_en, [prompt_gui], [prompt_gui], queue=False)\ + .then(translate_to_en, [neg_prompt_gui], [neg_prompt_gui], queue=False) - model_name.change(update_task_options, [model_name, task], [task], queue=False, show_api=False) - task.change(change_preprocessor_choices, [task], [preprocessor_name], queue=False, show_api=False) - active_textual_inversion.change(update_textual_inversion, [active_textual_inversion, model_name], [use_textual_inversion], queue=False, show_api=False) - model_name.change(update_textual_inversion, [active_textual_inversion, model_name], [use_textual_inversion], queue=False, show_api=False) - use_textual_inversion.change(set_textual_inversion_prompt, [use_textual_inversion, prompt, negative_prompt, prompt_syntax], [prompt, negative_prompt]) - - gr.on( #lambda x: None, inputs=None, outputs=result).then( - triggers=[run_button.click, prompt.submit], - fn=infer, - inputs=[prompt, negative_prompt, seed, randomize_seed, width, height, - guidance_scale, num_inference_steps, model_name, - lora1, lora1_wt, lora2, lora2_wt, lora3, lora3_wt, lora4, lora4_wt, - lora5, lora5_wt, lora6, lora6_wt, lora7, lora7_wt, task, prompt_syntax, - sampler, vae_model, schedule_type, schedule_prediction_type, - clip_skip, pag_scale, free_u, guidance_rescale, - image_control, image_mask, strength, image_resolution, - controlnet_model, control_net_output_scaling, control_net_start_threshold, control_net_stop_threshold, - preprocessor_name, preprocess_resolution, low_threshold, high_threshold, - value_threshold, distance_threshold, recolor_gamma_correction, tile_blur_sigma, - image_ip1, mask_ip1, model_ip1, mode_ip1, scale_ip1, - image_ip2, mask_ip2, model_ip2, mode_ip2, scale_ip2, - upscaler_model_path, upscaler_increases_size, esrgan_tile, esrgan_tile_overlap, hires_steps, hires_denoising_strength, - hires_sampler, hires_schedule_type, hires_guidance_scale, hires_prompt, hires_negative_prompt, - adetailer_inpaint_only, adetailer_verbose, adetailer_sampler, adetailer_active_a, - prompt_ad_a, negative_prompt_ad_a, strength_ad_a, face_detector_ad_a, person_detector_ad_a, hand_detector_ad_a, - mask_dilation_a, mask_blur_a, mask_padding_a, adetailer_active_b, prompt_ad_b, negative_prompt_ad_b, strength_ad_b, - face_detector_ad_b, person_detector_ad_b, hand_detector_ad_b, mask_dilation_b, mask_blur_b, mask_padding_b, - active_textual_inversion, gpu_duration, auto_trans, recom_prompt], - outputs=[result], - queue=True, - show_progress="full", - show_api=True, - ) + gr.on( + triggers=[quick_model_type_gui.change, quick_genre_gui.change, quick_speed_gui.change, quick_aspect_gui.change], + fn=set_quick_presets, + inputs=[quick_genre_gui, quick_model_type_gui, quick_speed_gui, quick_aspect_gui], + outputs=[quality_selector_gui, style_selector_gui, sampler_selector_gui, optimization_gui, insert_prompt_gui], + queue=False, + trigger_mode="once", + ) + gr.on( + triggers=[quality_selector_gui.change, style_selector_gui.change, insert_prompt_gui.change], + fn=process_style_prompt, + inputs=[prompt_gui, neg_prompt_gui, style_selector_gui, quality_selector_gui, insert_prompt_gui], + outputs=[prompt_gui, neg_prompt_gui, quick_model_type_gui], + queue=False, + trigger_mode="once", + ) + sampler_selector_gui.change(set_sampler_settings, [sampler_selector_gui], [sampler_gui, steps_gui, cfg_gui, clip_skip_gui, img_width_gui, img_height_gui, optimization_gui], queue=False) + optimization_gui.change(set_optimization, [optimization_gui, steps_gui, cfg_gui, sampler_gui, clip_skip_gui, lora5_gui, lora_scale_5_gui], [steps_gui, cfg_gui, sampler_gui, clip_skip_gui, lora5_gui, lora_scale_5_gui], queue=False) - gr.on( #lambda x: None, inputs=None, outputs=result).then( - triggers=[run_translate_button.click], - fn=_infer, # dummy fn for api - inputs=[prompt, negative_prompt, seed, randomize_seed, width, height, - guidance_scale, num_inference_steps, model_name, - lora1, lora1_wt, lora2, lora2_wt, lora3, lora3_wt, lora4, lora4_wt, - lora5, lora5_wt, lora6, lora6_wt, lora7, lora7_wt, task, prompt_syntax, - sampler, vae_model, schedule_type, schedule_prediction_type, - clip_skip, pag_scale, free_u, guidance_rescale, - image_control, image_mask, strength, image_resolution, - controlnet_model, control_net_output_scaling, control_net_start_threshold, control_net_stop_threshold, - preprocessor_name, preprocess_resolution, low_threshold, high_threshold, - value_threshold, distance_threshold, recolor_gamma_correction, tile_blur_sigma, - image_ip1, mask_ip1, model_ip1, mode_ip1, scale_ip1, - image_ip2, mask_ip2, model_ip2, mode_ip2, scale_ip2, - upscaler_model_path, upscaler_increases_size, esrgan_tile, esrgan_tile_overlap, hires_steps, hires_denoising_strength, - hires_sampler, hires_schedule_type, hires_guidance_scale, hires_prompt, hires_negative_prompt, - adetailer_inpaint_only, adetailer_verbose, adetailer_sampler, adetailer_active_a, - prompt_ad_a, negative_prompt_ad_a, strength_ad_a, face_detector_ad_a, person_detector_ad_a, hand_detector_ad_a, - mask_dilation_a, mask_blur_a, mask_padding_a, adetailer_active_b, prompt_ad_b, negative_prompt_ad_b, strength_ad_b, - face_detector_ad_b, person_detector_ad_b, hand_detector_ad_b, mask_dilation_b, mask_blur_b, mask_padding_b, - active_textual_inversion, gpu_duration, auto_trans, recom_prompt], - outputs=[result], - queue=False, - show_api=True, - api_name="infer_translate", - ).success( - fn=dolphin_respond_auto, - inputs=[prompt, chatbot, chat_model, chat_sysmsg, chat_tokens, chat_temperature, chat_topp, chat_topk, chat_rp, state], - outputs=[chatbot, result, prompt], - queue=True, - show_progress="full", - show_api=False, - ).success( - fn=dolphin_parse_simple, - inputs=[prompt, chatbot, state], - outputs=[prompt], - queue=False, - show_api=False, - ).success( - fn=infer, - inputs=[prompt, negative_prompt, seed, randomize_seed, width, height, - guidance_scale, num_inference_steps, model_name, - lora1, lora1_wt, lora2, lora2_wt, lora3, lora3_wt, lora4, lora4_wt, - lora5, lora5_wt, lora6, lora6_wt, lora7, lora7_wt, task, prompt_syntax, - sampler, vae_model, schedule_type, schedule_prediction_type, - clip_skip, pag_scale, free_u, guidance_rescale, - image_control, image_mask, strength, image_resolution, - controlnet_model, control_net_output_scaling, control_net_start_threshold, control_net_stop_threshold, - preprocessor_name, preprocess_resolution, low_threshold, high_threshold, - value_threshold, distance_threshold, recolor_gamma_correction, tile_blur_sigma, - image_ip1, mask_ip1, model_ip1, mode_ip1, scale_ip1, - image_ip2, mask_ip2, model_ip2, mode_ip2, scale_ip2, - upscaler_model_path, upscaler_increases_size, esrgan_tile, esrgan_tile_overlap, hires_steps, hires_denoising_strength, - hires_sampler, hires_schedule_type, hires_guidance_scale, hires_prompt, hires_negative_prompt, - adetailer_inpaint_only, adetailer_verbose, adetailer_sampler, adetailer_active_a, - prompt_ad_a, negative_prompt_ad_a, strength_ad_a, face_detector_ad_a, person_detector_ad_a, hand_detector_ad_a, - mask_dilation_a, mask_blur_a, mask_padding_a, adetailer_active_b, prompt_ad_b, negative_prompt_ad_b, strength_ad_b, - face_detector_ad_b, person_detector_ad_b, hand_detector_ad_b, mask_dilation_b, mask_blur_b, mask_padding_b, - active_textual_inversion, gpu_duration, auto_trans, recom_prompt], - outputs=[result], - queue=True, - show_progress="full", - show_api=False, - ).success(lambda: None, None, chatbot, queue=False, show_api=False)\ - .success(pass_result, [result], [result], queue=False, show_api=False) # dummy fn for api - - result.change(save_image_history, [result, history_gallery, history_files, model_name], [history_gallery, history_files], queue=False, show_api=False) - - gr.on( - triggers=[lora1.change, lora1_wt.change, lora2.change, lora2_wt.change, lora3.change, lora3_wt.change, - lora4.change, lora4_wt.change, lora5.change, lora5_wt.change, lora6.change, lora6_wt.change, lora7.change, lora7_wt.change, prompt_syntax.change], - fn=update_loras, - inputs=[prompt, prompt_syntax, lora1, lora1_wt, lora2, lora2_wt, lora3, lora3_wt, lora4, lora4_wt, lora5, lora5_wt, lora6, lora6_wt, lora7, lora7_wt], - outputs=[prompt, lora1, lora1_wt, lora1_info, lora1_copy, lora1_md, - lora2, lora2_wt, lora2_info, lora2_copy, lora2_md, lora3, lora3_wt, lora3_info, lora3_copy, lora3_md, - lora4, lora4_wt, lora4_info, lora4_copy, lora4_md, lora5, lora5_wt, lora5_info, lora5_copy, lora5_md, - lora6, lora6_wt, lora6_info, lora6_copy, lora6_md, lora7, lora7_wt, lora7_info, lora7_copy, lora7_md], - queue=False, - trigger_mode="once", - show_api=False, - ) - lora1_copy.click(apply_lora_prompt, [prompt, lora1_info], [prompt], queue=False, show_api=False) - lora2_copy.click(apply_lora_prompt, [prompt, lora2_info], [prompt], queue=False, show_api=False) - lora3_copy.click(apply_lora_prompt, [prompt, lora3_info], [prompt], queue=False, show_api=False) - lora4_copy.click(apply_lora_prompt, [prompt, lora4_info], [prompt], queue=False, show_api=False) - lora5_copy.click(apply_lora_prompt, [prompt, lora5_info], [prompt], queue=False, show_api=False) - lora6_copy.click(apply_lora_prompt, [prompt, lora6_info], [prompt], queue=False, show_api=False) - lora7_copy.click(apply_lora_prompt, [prompt, lora7_info], [prompt], queue=False, show_api=False) - - gr.on( - triggers=[lora_search_civitai_submit.click, lora_search_civitai_query.submit], - fn=search_civitai_lora, - inputs=[lora_search_civitai_query, lora_search_civitai_basemodel, lora_search_civitai_sort, lora_search_civitai_period, lora_search_civitai_tag, lora_search_civitai_user, lora_search_civitai_gallery], - outputs=[lora_search_civitai_result, lora_search_civitai_desc, lora_search_civitai_submit, lora_search_civitai_query, lora_search_civitai_gallery], - scroll_to_output=True, - queue=True, - show_api=False, - ) - lora_search_civitai_json.change(search_civitai_lora_json, [lora_search_civitai_query, lora_search_civitai_basemodel], [lora_search_civitai_json], queue=True, show_api=True) # fn for api - lora_search_civitai_result.change(select_civitai_lora, [lora_search_civitai_result], [lora_download_url, lora_search_civitai_desc], scroll_to_output=True, queue=False, show_api=False) - gr.on( - triggers=[lora_download.click, lora_download_url.submit], - fn=download_my_lora, - inputs=[lora_download_url, lora1, lora2, lora3, lora4, lora5, lora6, lora7], - outputs=[lora1, lora2, lora3, lora4, lora5, lora6, lora7], - scroll_to_output=True, - queue=True, - show_api=False, - ) - lora_search_civitai_gallery.select(update_civitai_selection, None, [lora_search_civitai_result], queue=False, show_api=False) - - #recom_prompt.change(enable_model_recom_prompt, [recom_prompt], [recom_prompt], queue=False, show_api=False) - gr.on( - triggers=[quality_selector.change, style_selector.change], - fn=process_style_prompt, - inputs=[prompt, negative_prompt, style_selector, quality_selector], - outputs=[prompt, negative_prompt], - queue=False, - trigger_mode="once", - show_api=False, - ) + gr.on( + triggers=[lora1_gui.change, lora_scale_1_gui.change, lora2_gui.change, lora_scale_2_gui.change, + lora3_gui.change, lora_scale_3_gui.change, lora4_gui.change, lora_scale_4_gui.change, + lora5_gui.change, lora_scale_5_gui.change, lora6_gui.change, lora_scale_6_gui.change, + lora7_gui.change, lora_scale_7_gui.change, prompt_syntax_gui.change], + fn=update_loras, + inputs=[prompt_gui, prompt_syntax_gui, lora1_gui, lora_scale_1_gui, lora2_gui, lora_scale_2_gui, + lora3_gui, lora_scale_3_gui, lora4_gui, lora_scale_4_gui, lora5_gui, lora_scale_5_gui, + lora6_gui, lora_scale_6_gui, lora7_gui, lora_scale_7_gui], + outputs=[prompt_gui, lora1_gui, lora_scale_1_gui, lora1_info_gui, lora1_copy_gui, lora1_desc_gui, + lora2_gui, lora_scale_2_gui, lora2_info_gui, lora2_copy_gui, lora2_desc_gui, + lora3_gui, lora_scale_3_gui, lora3_info_gui, lora3_copy_gui, lora3_desc_gui, + lora4_gui, lora_scale_4_gui, lora4_info_gui, lora4_copy_gui, lora4_desc_gui, + lora5_gui, lora_scale_5_gui, lora5_info_gui, lora5_copy_gui, lora5_desc_gui, + lora6_gui, lora_scale_6_gui, lora6_info_gui, lora6_copy_gui, lora6_desc_gui, + lora7_gui, lora_scale_7_gui, lora7_info_gui, lora7_copy_gui, lora7_desc_gui], + queue=False, + trigger_mode="once", + ) + lora1_copy_gui.click(apply_lora_prompt, [prompt_gui, lora1_info_gui], [prompt_gui], queue=False) + lora2_copy_gui.click(apply_lora_prompt, [prompt_gui, lora2_info_gui], [prompt_gui], queue=False) + lora3_copy_gui.click(apply_lora_prompt, [prompt_gui, lora3_info_gui], [prompt_gui], queue=False) + lora4_copy_gui.click(apply_lora_prompt, [prompt_gui, lora4_info_gui], [prompt_gui], queue=False) + lora5_copy_gui.click(apply_lora_prompt, [prompt_gui, lora5_info_gui], [prompt_gui], queue=False) + lora6_copy_gui.click(apply_lora_prompt, [prompt_gui, lora6_info_gui], [prompt_gui], queue=False) + lora7_copy_gui.click(apply_lora_prompt, [prompt_gui, lora7_info_gui], [prompt_gui], queue=False) + gr.on( + triggers=[search_civitai_button_lora.click, search_civitai_query_lora.submit], + fn=search_civitai_lora, + inputs=[search_civitai_query_lora, search_civitai_basemodel_lora, search_civitai_sort_lora, search_civitai_period_lora, + search_civitai_tag_lora, search_civitai_user_lora, search_civitai_gallery_lora], + outputs=[search_civitai_result_lora, search_civitai_desc_lora, search_civitai_button_lora, search_civitai_query_lora, search_civitai_gallery_lora], + queue=True, + scroll_to_output=True, + ) + search_civitai_result_lora.change(select_civitai_lora, [search_civitai_result_lora], [text_lora, search_civitai_desc_lora], queue=False, scroll_to_output=True) + search_civitai_gallery_lora.select(update_civitai_selection, None, [search_civitai_result_lora], queue=False, show_api=False) + button_lora.click(get_my_lora, [text_lora, romanize_text], [lora1_gui, lora2_gui, lora3_gui, lora4_gui, lora5_gui, lora6_gui, lora7_gui, new_lora_status], scroll_to_output=True) + upload_button_lora.upload(upload_file_lora, [upload_button_lora], [file_output_lora, upload_button_lora]).success( + move_file_lora, [file_output_lora], [lora1_gui, lora2_gui, lora3_gui, lora4_gui, lora5_gui, lora6_gui, lora7_gui], scroll_to_output=True) - model_detail.change(enable_diffusers_model_detail, [model_detail, model_name, state], [model_detail, model_name, state], queue=False, show_api=False) - model_name.change(get_t2i_model_info, [model_name], [model_info], queue=False, show_api=False) + use_textual_inversion_gui.change(set_textual_inversion_prompt, [use_textual_inversion_gui, prompt_gui, neg_prompt_gui, prompt_syntax_gui], [prompt_gui, neg_prompt_gui]) - chat_model.change(select_dolphin_model, [chat_model, state], [chat_model, chat_format, chat_model_info, state], queue=True, show_progress="full", show_api=False)\ - .success(lambda: None, None, chatbot, queue=False, show_api=False) - chat_format.change(select_dolphin_format, [chat_format, state], [chat_format, state], queue=False, show_api=False)\ - .success(lambda: None, None, chatbot, queue=False, show_api=False) + generate_from_image_btn_gui.click( + lambda: ("", "", ""), None, [series_dbt, character_dbt, prompt_gui], queue=False, + ).success( + predict_tags_wd, + [input_image_gui, prompt_gui, image_algorithms, general_threshold_gui, character_threshold_gui], + [series_dbt, character_dbt, prompt_gui, copy_button_dbt], + ).success( + compose_prompt_to_copy, [character_dbt, series_dbt, prompt_gui], [prompt_gui], queue=False, + ).success( + remove_specific_prompt, [prompt_gui, keep_tags_gui], [prompt_gui], queue=False, + ).success( + convert_danbooru_to_e621_prompt, [prompt_gui, tag_type_gui], [prompt_gui], queue=False, + ).success( + insert_recom_prompt, [prompt_gui, neg_prompt_gui, recom_prompt_gui], [prompt_gui, neg_prompt_gui], queue=False, + ) + + prompt_type_button.click(convert_danbooru_to_e621_prompt, [prompt_gui, prompt_type_gui], [prompt_gui], queue=False) + random_character_gui.click(select_random_character, [series_dbt, character_dbt], [series_dbt, character_dbt], queue=False) + generate_db_random_button.click( + v2_random_prompt, + [prompt_gui, series_dbt, character_dbt, + rating_dbt, aspect_ratio_dbt, length_dbt, identity_dbt, ban_tags_dbt, model_name_dbt], + [prompt_gui, series_dbt, character_dbt], + ).success( + convert_danbooru_to_e621_prompt, [prompt_gui, tag_type_gui], [prompt_gui], queue=False, + ) + + translate_prompt_button.click(translate_prompt, [prompt_gui], [prompt_gui], queue=False) + translate_prompt_button.click(translate_prompt, [character_dbt], [character_dbt], queue=False) + translate_prompt_button.click(translate_prompt, [series_dbt], [series_dbt], queue=False) + + generate_button.click( + fn=insert_model_recom_prompt, + inputs=[prompt_gui, neg_prompt_gui, model_name_gui, recom_prompt_gui], + outputs=[prompt_gui, neg_prompt_gui], + queue=False, + ).success( + fn=sd_gen.load_new_model, + inputs=[ + model_name_gui, + vae_model_gui, + task_gui, + controlnet_model_gui, + ], + outputs=[load_model_gui], + queue=True, + show_progress="minimal", + ).success( + fn=sd_gen_generate_pipeline, + inputs=[ + prompt_gui, + neg_prompt_gui, + num_images_gui, + steps_gui, + cfg_gui, + clip_skip_gui, + seed_gui, + lora1_gui, + lora_scale_1_gui, + lora2_gui, + lora_scale_2_gui, + lora3_gui, + lora_scale_3_gui, + lora4_gui, + lora_scale_4_gui, + lora5_gui, + lora_scale_5_gui, + lora6_gui, + lora_scale_6_gui, + lora7_gui, + lora_scale_7_gui, + sampler_gui, + schedule_type_gui, + schedule_prediction_type_gui, + img_height_gui, + img_width_gui, + model_name_gui, + vae_model_gui, + task_gui, + image_control, + preprocessor_name_gui, + preprocess_resolution_gui, + image_resolution_gui, + style_prompt_gui, + style_json_gui, + image_mask_gui, + strength_gui, + low_threshold_gui, + high_threshold_gui, + value_threshold_gui, + distance_threshold_gui, + recolor_gamma_correction_gui, + tile_blur_sigma_gui, + control_net_output_scaling_gui, + control_net_start_threshold_gui, + control_net_stop_threshold_gui, + active_textual_inversion_gui, + prompt_syntax_gui, + upscaler_model_path_gui, + upscaler_increases_size_gui, + esrgan_tile_gui, + esrgan_tile_overlap_gui, + hires_steps_gui, + hires_denoising_strength_gui, + hires_sampler_gui, + hires_prompt_gui, + hires_negative_prompt_gui, + hires_before_adetailer_gui, + hires_after_adetailer_gui, + hires_schedule_type_gui, + hires_guidance_scale_gui, + controlnet_model_gui, + loop_generation_gui, + leave_progress_bar_gui, + disable_progress_bar_gui, + image_previews_gui, + display_images_gui, + save_generated_images_gui, + filename_pattern_gui, + image_storage_location_gui, + retain_compel_previous_load_gui, + retain_detailfix_model_previous_load_gui, + retain_hires_model_previous_load_gui, + t2i_adapter_preprocessor_gui, + adapter_conditioning_scale_gui, + adapter_conditioning_factor_gui, + xformers_memory_efficient_attention_gui, + free_u_gui, + generator_in_cpu_gui, + adetailer_inpaint_only_gui, + adetailer_verbose_gui, + adetailer_sampler_gui, + adetailer_active_a_gui, + prompt_ad_a_gui, + negative_prompt_ad_a_gui, + strength_ad_a_gui, + face_detector_ad_a_gui, + person_detector_ad_a_gui, + hand_detector_ad_a_gui, + mask_dilation_a_gui, + mask_blur_a_gui, + mask_padding_a_gui, + adetailer_active_b_gui, + prompt_ad_b_gui, + negative_prompt_ad_b_gui, + strength_ad_b_gui, + face_detector_ad_b_gui, + person_detector_ad_b_gui, + hand_detector_ad_b_gui, + mask_dilation_b_gui, + mask_blur_b_gui, + mask_padding_b_gui, + retain_task_cache_gui, + guidance_rescale_gui, + image_ip1, + mask_ip1, + model_ip1, + mode_ip1, + scale_ip1, + image_ip2, + mask_ip2, + model_ip2, + mode_ip2, + scale_ip2, + pag_scale_gui, + load_lora_cpu_gui, + verbose_info_gui, + gpu_duration_gui, + ], + outputs=[load_model_gui, result_images, actual_task_info], + queue=True, + show_progress="full", + ).success(save_gallery_images, [result_images, model_name_gui], [result_images, result_images_files], queue=False, show_api=False)\ + .success(save_gallery_history, [result_images, result_images_files, history_gallery, history_files], [history_gallery, history_files], queue=False, show_api=False) - # Tagger - with gr.Tab("Tags Transformer with Tagger"): - with gr.Column(): + with gr.Tab("Danbooru Tags Transformer with WD Tagger", render=True): + with gr.Column(scale=2): with gr.Group(): input_image = gr.Image(label="Input image", type="pil", sources=["upload", "clipboard"], height=256) with gr.Accordion(label="Advanced options", open=False): @@ -528,14 +1670,14 @@ with gr.Blocks(fill_width=True, elem_id="container", css=css, delete_cache=(60, character_threshold = gr.Slider(label="Character threshold", minimum=0.0, maximum=1.0, value=0.8, step=0.01, interactive=True) input_tag_type = gr.Radio(label="Convert tags to", info="danbooru for Animagine, e621 for Pony.", choices=["danbooru", "e621"], value="danbooru") recom_prompt = gr.Radio(label="Insert reccomended prompt", choices=["None", "Animagine", "Pony"], value="None", interactive=True) - image_algorithms = gr.CheckboxGroup(["Use WD Tagger", "Use Florence-2-SD3-Long-Captioner"], label="Algorithms", value=["Use WD Tagger"]) + image_algorithms = gr.CheckboxGroup(["Use WD Tagger"], label="Algorithms", value=["Use WD Tagger"], visible=False) keep_tags = gr.Radio(label="Remove tags leaving only the following", choices=["body", "dress", "all"], value="all") generate_from_image_btn = gr.Button(value="GENERATE TAGS FROM IMAGE", size="lg", variant="primary") with gr.Group(): with gr.Row(): input_character = gr.Textbox(label="Character tags", placeholder="hatsune miku") input_copyright = gr.Textbox(label="Copyright tags", placeholder="vocaloid") - random_character = gr.Button(value="Random character 🎲", size="sm") + pick_random_character = gr.Button(value="Random character 🎲", size="sm") input_general = gr.TextArea(label="General tags", lines=4, placeholder="1girl, ...", value="") input_tags_to_copy = gr.Textbox(value="", visible=False) with gr.Row(): @@ -565,89 +1707,53 @@ with gr.Blocks(fill_width=True, elem_id="container", css=css, delete_cache=(60, with gr.Row(): copy_btn_pony = gr.Button(value="Copy to clipboard", size="sm", interactive=False) copy_prompt_btn_pony = gr.Button(value="Copy to primary prompt", size="sm", interactive=False) + description_ui() - random_character.click(select_random_character, [input_copyright, input_character], [input_copyright, input_character], queue=False, show_api=False) - - translate_input_prompt_button.click(translate_prompt, [input_general], [input_general], queue=False, show_api=False) - translate_input_prompt_button.click(translate_prompt, [input_character], [input_character], queue=False, show_api=False) - translate_input_prompt_button.click(translate_prompt, [input_copyright], [input_copyright], queue=False, show_api=False) + translate_input_prompt_button.click(translate_prompt, inputs=[input_general], outputs=[input_general], queue=False) + translate_input_prompt_button.click(translate_prompt, inputs=[input_character], outputs=[input_character], queue=False) + translate_input_prompt_button.click(translate_prompt, inputs=[input_copyright], outputs=[input_copyright], queue=False) generate_from_image_btn.click( - lambda: ("", "", ""), None, [input_copyright, input_character, input_general], queue=False, show_api=False, + lambda: ("", "", ""), None, [input_copyright, input_character, input_general], queue=False, ).success( predict_tags_wd, [input_image, input_general, image_algorithms, general_threshold, character_threshold], [input_copyright, input_character, input_general, copy_input_btn], - show_api=False, - ).success( - predict_tags_fl2_sd3, [input_image, input_general, image_algorithms], [input_general], show_api=False, ).success( - remove_specific_prompt, [input_general, keep_tags], [input_general], queue=False, show_api=False, + remove_specific_prompt, inputs=[input_general, keep_tags], outputs=[input_general], queue=False, ).success( - convert_danbooru_to_e621_prompt, [input_general, input_tag_type], [input_general], queue=False, show_api=False, + convert_danbooru_to_e621_prompt, inputs=[input_general, input_tag_type], outputs=[input_general], queue=False, ).success( - insert_recom_prompt, [input_general, dummy_np, recom_prompt], [input_general, dummy_np], queue=False, show_api=False, - ).success(lambda: gr.update(interactive=True), None, [copy_prompt_btn_input], queue=False, show_api=False) - copy_input_btn.click(compose_prompt_to_copy, [input_character, input_copyright, input_general], [input_tags_to_copy], show_api=False)\ - .success(gradio_copy_text, [input_tags_to_copy], js=COPY_ACTION_JS, show_api=False) - copy_prompt_btn_input.click(compose_prompt_to_copy, inputs=[input_character, input_copyright, input_general], outputs=[input_tags_to_copy], show_api=False)\ - .success(gradio_copy_prompt, inputs=[input_tags_to_copy], outputs=[prompt], show_api=False) + insert_recom_prompt, inputs=[input_general, dummy_np, recom_prompt], outputs=[input_general, dummy_np], queue=False, + ).success(lambda: gr.update(interactive=True), None, [copy_prompt_btn_input], queue=False) + copy_input_btn.click(compose_prompt_to_copy, inputs=[input_character, input_copyright, input_general], outputs=[input_tags_to_copy])\ + .success(gradio_copy_text, inputs=[input_tags_to_copy], js=COPY_ACTION_JS) + copy_prompt_btn_input.click(compose_prompt_to_copy, inputs=[input_character, input_copyright, input_general], outputs=[input_tags_to_copy])\ + .success(gradio_copy_prompt, inputs=[input_tags_to_copy], outputs=[prompt_gui]) + pick_random_character.click(select_random_character, [input_copyright, input_character], [input_copyright, input_character]) + generate_btn.click( v2_upsampling_prompt, [model_name, input_copyright, input_character, input_general, input_rating, input_aspect_ratio, input_length, input_identity, input_ban_tags], [output_text], - show_api=False, ).success( - convert_danbooru_to_e621_prompt, [output_text, tag_type], [output_text_pony], queue=False, show_api=False, + convert_danbooru_to_e621_prompt, inputs=[output_text, tag_type], outputs=[output_text_pony], queue=False, ).success( - insert_recom_prompt, [output_text, dummy_np, recom_animagine], [output_text, dummy_np], queue=False, show_api=False, + insert_recom_prompt, inputs=[output_text, dummy_np, recom_animagine], outputs=[output_text, dummy_np], queue=False, ).success( - insert_recom_prompt, [output_text_pony, dummy_np, recom_pony], [output_text_pony, dummy_np], queue=False, show_api=False, + insert_recom_prompt, inputs=[output_text_pony, dummy_np, recom_pony], outputs=[output_text_pony, dummy_np], queue=False, ).success(lambda: (gr.update(interactive=True), gr.update(interactive=True), gr.update(interactive=True), gr.update(interactive=True)), - None, [copy_btn, copy_btn_pony, copy_prompt_btn, copy_prompt_btn_pony], queue=False, show_api=False) - copy_btn.click(gradio_copy_text, [output_text], js=COPY_ACTION_JS, show_api=False) - copy_btn_pony.click(gradio_copy_text, [output_text_pony], js=COPY_ACTION_JS, show_api=False) - copy_prompt_btn.click(gradio_copy_prompt, inputs=[output_text], outputs=[prompt], show_api=False) - copy_prompt_btn_pony.click(gradio_copy_prompt, inputs=[output_text_pony], outputs=[prompt], show_api=False) - - with gr.Tab("PNG Info"): - with gr.Row(): - with gr.Column(): - image_metadata = gr.Image(label="Image with metadata", type="pil", sources=["upload"]) - - with gr.Column(): - result_metadata = gr.Textbox(label="Metadata", show_label=True, show_copy_button=True, interactive=False, container=True, max_lines=99) - - image_metadata.change( - fn=extract_exif_data, - inputs=[image_metadata], - outputs=[result_metadata], - ) - - with gr.Tab("Upscaler"): - with gr.Row(): - with gr.Column(): - image_up_tab = gr.Image(label="Image", type="pil", sources=["upload"]) - upscaler_tab = gr.Dropdown(label="Upscaler", choices=UPSCALER_KEYS[9:], value=UPSCALER_KEYS[11]) - upscaler_size_tab = gr.Slider(minimum=1., maximum=4., step=0.1, value=1.1, label="Upscale by") - generate_button_up_tab = gr.Button(value="START UPSCALE", variant="primary") - - with gr.Column(): - result_up_tab = gr.Image(label="Result", type="pil", interactive=False, format="png") - - generate_button_up_tab.click( - fn=esrgan_upscale, - inputs=[image_up_tab, upscaler_tab, upscaler_size_tab], - outputs=[result_up_tab], - ) - - with gr.Tab("Preprocessor", render=True): - preprocessor_tab() + None, [copy_btn, copy_btn_pony, copy_prompt_btn, copy_prompt_btn_pony], queue=False) + copy_btn.click(gradio_copy_text, inputs=[output_text], js=COPY_ACTION_JS) + copy_btn_pony.click(gradio_copy_text, inputs=[output_text_pony], js=COPY_ACTION_JS) + copy_prompt_btn.click(gradio_copy_prompt, inputs=[output_text], outputs=[prompt_gui]) + copy_prompt_btn_pony.click(gradio_copy_prompt, inputs=[output_text_pony], outputs=[prompt_gui]) gr.LoginButton() gr.DuplicateButton(value="Duplicate Space for private use (This demo does not work on CPU. Requires GPU Space)") -demo.queue() -demo.launch(show_error=True, debug=True) +app.queue() +app.launch(show_error=True, debug=True) # allowed_paths=["./images/"], show_error=True, debug=True +## END MOD