John6666 commited on
Commit
52ebc2a
·
verified ·
1 Parent(s): 4a4807f

Upload 6 files

Browse files
Files changed (6) hide show
  1. app.py +22 -18
  2. dc.py +27 -40
  3. llmdolphin.py +26 -0
  4. lora_dict.json +7 -0
  5. modutils.py +122 -52
  6. null.png +0 -0
app.py CHANGED
@@ -4,11 +4,10 @@ import numpy as np
4
 
5
  # DiffuseCraft
6
  from dc import (infer, _infer, pass_result, get_diffusers_model_list, get_samplers,
7
- get_vaes, enable_model_recom_prompt, enable_diffusers_model_detail,
8
- get_t2i_model_info, get_all_lora_tupled_list, update_loras,
9
- apply_lora_prompt, download_my_lora, search_civitai_lora,
10
- select_civitai_lora, search_civitai_lora_json, extract_exif_data, esrgan_upscale, UPSCALER_KEYS,
11
- preset_quality, preset_styles, process_style_prompt)
12
  # Translator
13
  from llmdolphin import (dolphin_respond_auto, dolphin_parse_simple,
14
  get_llm_formats, get_dolphin_model_format, get_dolphin_models,
@@ -41,8 +40,9 @@ css = """
41
  #col-container { margin: 0 auto; !important; }
42
  #result { max-width: 520px; max-height: 520px; margin: 0px auto; !important; }
43
  .lora { min-width: 480px; !important; }
44
- #model-info { text-align: center; !important; }
45
- .title{ text-align: center; !important; }
 
46
  """
47
 
48
  with gr.Blocks(fill_width=True, elem_id="container", css=css, delete_cache=(60, 3600)) as demo:
@@ -80,7 +80,7 @@ with gr.Blocks(fill_width=True, elem_id="container", css=css, delete_cache=(60,
80
  model_name = gr.Dropdown(label="Model", info="You can enter a huggingface model repo_id to want to use.",
81
  choices=get_diffusers_model_list(), value=get_diffusers_model_list()[0],
82
  allow_custom_value=True, interactive=True, min_width=320)
83
- model_info = gr.Markdown(elem_id="model-info")
84
  with gr.Column(scale=1):
85
  model_detail = gr.Checkbox(label="Show detail of model in list", value=False)
86
 
@@ -141,17 +141,20 @@ with gr.Blocks(fill_width=True, elem_id="container", css=css, delete_cache=(60,
141
  lora5_md = gr.Markdown(value="", visible=False)
142
  with gr.Accordion("From URL", open=True, visible=True):
143
  with gr.Row():
144
- lora_search_civitai_basemodel = gr.CheckboxGroup(label="Search LoRA for", choices=["Pony", "SD 1.5", "SDXL 1.0", "Flux.1 D", "Flux.1 S"], value=["Pony", "SDXL 1.0"])
145
- lora_search_civitai_sort = gr.Radio(label="Sort", choices=["Highest Rated", "Most Downloaded", "Newest"], value="Highest Rated")
146
- lora_search_civitai_period = gr.Radio(label="Period", choices=["AllTime", "Year", "Month", "Week", "Day"], value="AllTime")
147
  with gr.Row():
148
  lora_search_civitai_query = gr.Textbox(label="Query", placeholder="oomuro sakurako...", lines=1)
149
- lora_search_civitai_tag = gr.Textbox(label="Tag", lines=1)
150
- lora_search_civitai_submit = gr.Button("Search on Civitai")
 
151
  with gr.Row():
152
- lora_search_civitai_result = gr.Dropdown(label="Search Results", choices=[("", "")], value="", allow_custom_value=True, visible=False)
153
  lora_search_civitai_json = gr.JSON(value={}, visible=False)
154
- lora_search_civitai_desc = gr.Markdown(value="", visible=False)
 
 
 
155
  lora_download_url = gr.Textbox(label="LoRA URL", placeholder="https://civitai.com/api/download/models/28907", lines=1)
156
  lora_download = gr.Button("Get and set LoRA and apply to prompt")
157
 
@@ -254,10 +257,10 @@ with gr.Blocks(fill_width=True, elem_id="container", css=css, delete_cache=(60,
254
  lora5_copy.click(apply_lora_prompt, [prompt, lora5_info], [prompt], queue=False, show_api=False)
255
 
256
  gr.on(
257
- triggers=[lora_search_civitai_submit.click, lora_search_civitai_query.submit, lora_search_civitai_tag.submit],
258
  fn=search_civitai_lora,
259
- inputs=[lora_search_civitai_query, lora_search_civitai_basemodel, lora_search_civitai_sort, lora_search_civitai_period, lora_search_civitai_tag],
260
- outputs=[lora_search_civitai_result, lora_search_civitai_desc, lora_search_civitai_submit, lora_search_civitai_query],
261
  scroll_to_output=True,
262
  queue=True,
263
  show_api=False,
@@ -273,6 +276,7 @@ with gr.Blocks(fill_width=True, elem_id="container", css=css, delete_cache=(60,
273
  queue=True,
274
  show_api=False,
275
  )
 
276
 
277
  recom_prompt.change(enable_model_recom_prompt, [recom_prompt], [recom_prompt], queue=False, show_api=False)
278
  gr.on(
 
4
 
5
  # DiffuseCraft
6
  from dc import (infer, _infer, pass_result, get_diffusers_model_list, get_samplers,
7
+ get_vaes, enable_model_recom_prompt, enable_diffusers_model_detail, extract_exif_data, esrgan_upscale, UPSCALER_KEYS,
8
+ preset_quality, preset_styles, process_style_prompt, get_all_lora_tupled_list, update_loras, apply_lora_prompt,
9
+ download_my_lora, search_civitai_lora, update_civitai_selection, select_civitai_lora, search_civitai_lora_json)
10
+ from modutils import get_t2i_model_info, get_civitai_tag, CIVITAI_SORT, CIVITAI_PERIOD, CIVITAI_BASEMODEL
 
11
  # Translator
12
  from llmdolphin import (dolphin_respond_auto, dolphin_parse_simple,
13
  get_llm_formats, get_dolphin_model_format, get_dolphin_models,
 
40
  #col-container { margin: 0 auto; !important; }
41
  #result { max-width: 520px; max-height: 520px; margin: 0px auto; !important; }
42
  .lora { min-width: 480px; !important; }
43
+ .title { font-size: 3em; align-items: center; text-align: center; }
44
+ .info { align-items: center; text-align: center; }
45
+ .desc [src$='#float'] { float: right; margin: 20px; }
46
  """
47
 
48
  with gr.Blocks(fill_width=True, elem_id="container", css=css, delete_cache=(60, 3600)) as demo:
 
80
  model_name = gr.Dropdown(label="Model", info="You can enter a huggingface model repo_id to want to use.",
81
  choices=get_diffusers_model_list(), value=get_diffusers_model_list()[0],
82
  allow_custom_value=True, interactive=True, min_width=320)
83
+ model_info = gr.Markdown(elem_classes="info")
84
  with gr.Column(scale=1):
85
  model_detail = gr.Checkbox(label="Show detail of model in list", value=False)
86
 
 
141
  lora5_md = gr.Markdown(value="", visible=False)
142
  with gr.Accordion("From URL", open=True, visible=True):
143
  with gr.Row():
144
+ lora_search_civitai_basemodel = gr.CheckboxGroup(label="Search LoRA for", choices=CIVITAI_BASEMODEL, value=["Pony", "SDXL 1.0"])
145
+ lora_search_civitai_sort = gr.Radio(label="Sort", choices=CIVITAI_SORT, value="Highest Rated")
146
+ lora_search_civitai_period = gr.Radio(label="Period", choices=CIVITAI_PERIOD, value="AllTime")
147
  with gr.Row():
148
  lora_search_civitai_query = gr.Textbox(label="Query", placeholder="oomuro sakurako...", lines=1)
149
+ lora_search_civitai_tag = gr.Dropdown(label="Tag", choices=get_civitai_tag(), value=get_civitai_tag()[0], allow_custom_value=True)
150
+ lora_search_civitai_user = gr.Textbox(label="Username", lines=1)
151
+ lora_search_civitai_submit = gr.Button("Search on Civitai")
152
  with gr.Row():
 
153
  lora_search_civitai_json = gr.JSON(value={}, visible=False)
154
+ lora_search_civitai_desc = gr.Markdown(value="", visible=False, elem_classes="desc")
155
+ with gr.Accordion("Select from Gallery", open=False):
156
+ lora_search_civitai_gallery = gr.Gallery([], label="Results", allow_preview=False, columns=5, show_share_button=False, interactive=False)
157
+ lora_search_civitai_result = gr.Dropdown(label="Search Results", choices=[("", "")], value="", allow_custom_value=True, visible=False)
158
  lora_download_url = gr.Textbox(label="LoRA URL", placeholder="https://civitai.com/api/download/models/28907", lines=1)
159
  lora_download = gr.Button("Get and set LoRA and apply to prompt")
160
 
 
257
  lora5_copy.click(apply_lora_prompt, [prompt, lora5_info], [prompt], queue=False, show_api=False)
258
 
259
  gr.on(
260
+ triggers=[lora_search_civitai_submit.click, lora_search_civitai_query.submit],
261
  fn=search_civitai_lora,
262
+ inputs=[lora_search_civitai_query, lora_search_civitai_basemodel, lora_search_civitai_sort, lora_search_civitai_period, lora_search_civitai_tag, lora_search_civitai_user, lora_search_civitai_gallery],
263
+ outputs=[lora_search_civitai_result, lora_search_civitai_desc, lora_search_civitai_submit, lora_search_civitai_query, lora_search_civitai_gallery],
264
  scroll_to_output=True,
265
  queue=True,
266
  show_api=False,
 
276
  queue=True,
277
  show_api=False,
278
  )
279
+ lora_search_civitai_gallery.select(update_civitai_selection, None, [lora_search_civitai_result], queue=False, show_api=False)
280
 
281
  recom_prompt.change(enable_model_recom_prompt, [recom_prompt], [recom_prompt], queue=False, show_api=False)
282
  gr.on(
dc.py CHANGED
@@ -783,7 +783,7 @@ from PIL import Image
783
  import random, json
784
  from modutils import (safe_float, escape_lora_basename, to_lora_key, to_lora_path,
785
  get_local_model_list, get_private_lora_model_lists, get_valid_lora_name,
786
- get_valid_lora_path, get_valid_lora_wt, get_lora_info,
787
  normalize_prompt_list, get_civitai_info, search_lora_on_civitai, translate_to_en)
788
 
789
  sd_gen = GuiSD()
@@ -893,35 +893,6 @@ def enable_diffusers_model_detail(is_enable: bool = False, model_name: str = "")
893
  return gr.update(value=is_enable), gr.update(value=new_value, choices=get_diffusers_model_list())
894
 
895
 
896
- def get_t2i_model_info(repo_id: str):
897
- from huggingface_hub import HfApi
898
- api = HfApi()
899
- try:
900
- if " " in repo_id or not api.repo_exists(repo_id): return ""
901
- model = api.model_info(repo_id=repo_id)
902
- except Exception as e:
903
- print(f"Error: Failed to get {repo_id}'s info. {e}")
904
- return ""
905
- if model.private or model.gated: return ""
906
- tags = model.tags
907
- info = []
908
- url = f"https://huggingface.co/{repo_id}/"
909
- if not 'diffusers' in tags: return ""
910
- if 'diffusers:FluxPipeline' in tags:
911
- info.append("FLUX.1")
912
- elif 'diffusers:StableDiffusionXLPipeline' in tags:
913
- info.append("SDXL")
914
- elif 'diffusers:StableDiffusionPipeline' in tags:
915
- info.append("SD1.5")
916
- if model.card_data and model.card_data.tags:
917
- info.extend(list_sub(model.card_data.tags, ['text-to-image', 'stable-diffusion', 'stable-diffusion-api', 'safetensors', 'stable-diffusion-xl']))
918
- info.append(f"DLs: {model.downloads}")
919
- info.append(f"likes: {model.likes}")
920
- info.append(model.last_modified.strftime("lastmod: %Y-%m-%d"))
921
- md = f"Model Info: {', '.join(info)}, [Model Repo]({url})"
922
- return gr.update(value=md)
923
-
924
-
925
  def load_model_prompt_dict():
926
  import json
927
  dict = {}
@@ -1209,30 +1180,46 @@ def update_loras(prompt, lora1, lora1_wt, lora2, lora2_wt, lora3, lora3_wt, lora
1209
  gr.update(value=tag5, label=label5, visible=on5), gr.update(visible=on5), gr.update(value=md5, visible=on5)
1210
 
1211
 
1212
- def search_civitai_lora(query, base_model, sort="Highest Rated", period="AllTime", tag=""):
1213
- global civitai_lora_last_results
1214
- items = search_lora_on_civitai(query, base_model, 100, sort, period, tag)
 
 
 
1215
  if not items: return gr.update(choices=[("", "")], value="", visible=False),\
1216
- gr.update(value="", visible=False), gr.update(visible=True), gr.update(visible=True)
1217
- civitai_lora_last_results = {}
1218
  choices = []
 
1219
  for item in items:
1220
  base_model_name = "Pony🐴" if item['base_model'] == "Pony" else item['base_model']
1221
  name = f"{item['name']} (for {base_model_name} / By: {item['creator']} / Tags: {', '.join(item['tags'])})"
1222
  value = item['dl_url']
1223
  choices.append((name, value))
1224
- civitai_lora_last_results[value] = item
 
1225
  if not choices: return gr.update(choices=[("", "")], value="", visible=False),\
1226
- gr.update(value="", visible=False), gr.update(visible=True), gr.update(visible=True)
1227
- result = civitai_lora_last_results.get(choices[0][1], "None")
 
 
1228
  md = result['md'] if result else ""
1229
  return gr.update(choices=choices, value=choices[0][1], visible=True), gr.update(value=md, visible=True),\
1230
- gr.update(visible=True), gr.update(visible=True)
 
 
 
 
 
 
 
 
 
1231
 
1232
 
1233
  def select_civitai_lora(search_result):
1234
  if not "http" in search_result: return gr.update(value=""), gr.update(value="None", visible=True)
1235
- result = civitai_lora_last_results.get(search_result, "None")
1236
  md = result['md'] if result else ""
1237
  return gr.update(value=search_result), gr.update(value=md, visible=True)
1238
 
 
783
  import random, json
784
  from modutils import (safe_float, escape_lora_basename, to_lora_key, to_lora_path,
785
  get_local_model_list, get_private_lora_model_lists, get_valid_lora_name,
786
+ get_valid_lora_path, get_valid_lora_wt, get_lora_info, CIVITAI_SORT, CIVITAI_PERIOD,
787
  normalize_prompt_list, get_civitai_info, search_lora_on_civitai, translate_to_en)
788
 
789
  sd_gen = GuiSD()
 
893
  return gr.update(value=is_enable), gr.update(value=new_value, choices=get_diffusers_model_list())
894
 
895
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
896
  def load_model_prompt_dict():
897
  import json
898
  dict = {}
 
1180
  gr.update(value=tag5, label=label5, visible=on5), gr.update(visible=on5), gr.update(value=md5, visible=on5)
1181
 
1182
 
1183
+ def search_civitai_lora(query, base_model=[], sort=CIVITAI_SORT[0], period=CIVITAI_PERIOD[0], tag="", user="", gallery=[]):
1184
+ global civitai_last_results, civitai_last_choices, civitai_last_gallery
1185
+ civitai_last_choices = [("", "")]
1186
+ civitai_last_gallery = []
1187
+ civitai_last_results = {}
1188
+ items = search_lora_on_civitai(query, base_model, 100, sort, period, tag, user)
1189
  if not items: return gr.update(choices=[("", "")], value="", visible=False),\
1190
+ gr.update(value="", visible=False), gr.update(visible=True), gr.update(visible=True), gr.update(visible=True)
1191
+ civitai_last_results = {}
1192
  choices = []
1193
+ gallery = []
1194
  for item in items:
1195
  base_model_name = "Pony🐴" if item['base_model'] == "Pony" else item['base_model']
1196
  name = f"{item['name']} (for {base_model_name} / By: {item['creator']} / Tags: {', '.join(item['tags'])})"
1197
  value = item['dl_url']
1198
  choices.append((name, value))
1199
+ gallery.append((item['img_url'], name))
1200
+ civitai_last_results[value] = item
1201
  if not choices: return gr.update(choices=[("", "")], value="", visible=False),\
1202
+ gr.update(value="", visible=False), gr.update(visible=True), gr.update(visible=True), gr.update(visible=True)
1203
+ civitai_last_choices = choices
1204
+ civitai_last_gallery = gallery
1205
+ result = civitai_last_results.get(choices[0][1], "None")
1206
  md = result['md'] if result else ""
1207
  return gr.update(choices=choices, value=choices[0][1], visible=True), gr.update(value=md, visible=True),\
1208
+ gr.update(visible=True), gr.update(visible=True), gr.update(value=gallery)
1209
+
1210
+
1211
+ def update_civitai_selection(evt: gr.SelectData):
1212
+ try:
1213
+ selected_index = evt.index
1214
+ selected = civitai_last_choices[selected_index][1]
1215
+ return gr.update(value=selected)
1216
+ except Exception:
1217
+ return gr.update(visible=True)
1218
 
1219
 
1220
  def select_civitai_lora(search_result):
1221
  if not "http" in search_result: return gr.update(value=""), gr.update(value="None", visible=True)
1222
+ result = civitai_last_results.get(search_result, "None")
1223
  md = result['md'] if result else ""
1224
  return gr.update(value=search_result), gr.update(value=md, visible=True)
1225
 
llmdolphin.py CHANGED
@@ -59,11 +59,37 @@ llm_models = {
59
  "Qwen2.5-14B_Uncensored_Instruct.Q4_K_M.gguf": ["mradermacher/Qwen2.5-14B_Uncensored_Instruct-GGUF", MessagesFormatterType.OPEN_CHAT],
60
  "EVA-Qwen2.5-14B-v0.0.i1-IQ4_XS.gguf": ["mradermacher/EVA-Qwen2.5-14B-v0.0-i1-GGUF", MessagesFormatterType.OPEN_CHAT],
61
  "MN-12B-Vespa-x1.i1-Q4_K_M.gguf": ["mradermacher/MN-12B-Vespa-x1-i1-GGUF", MessagesFormatterType.CHATML],
 
62
  "Trinas_Nectar-8B-model_stock.i1-Q4_K_M.gguf": ["mradermacher/Trinas_Nectar-8B-model_stock-i1-GGUF", MessagesFormatterType.MISTRAL],
63
  "ChatWaifu_12B_v2.0.Q5_K_M.gguf": ["mradermacher/ChatWaifu_12B_v2.0-GGUF", MessagesFormatterType.MISTRAL],
64
  "ChatWaifu_22B_v2.0_preview.Q4_K_S.gguf": ["mradermacher/ChatWaifu_22B_v2.0_preview-GGUF", MessagesFormatterType.MISTRAL],
65
  "ChatWaifu_v1.4.Q5_K_M.gguf": ["mradermacher/ChatWaifu_v1.4-GGUF", MessagesFormatterType.MISTRAL],
66
  "ChatWaifu_v1.3.1.Q4_K_M.gguf": ["mradermacher/ChatWaifu_v1.3.1-GGUF", MessagesFormatterType.MISTRAL],
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
67
  "ModeliCo-8B.i1-Q5_K_M.gguf": ["mradermacher/ModeliCo-8B-i1-GGUF", MessagesFormatterType.LLAMA_3],
68
  "Llama3-8B-function-calling-dpo-slerp.i1-Q5_K_M.gguf": ["mradermacher/Llama3-8B-function-calling-dpo-slerp-i1-GGUF", MessagesFormatterType.LLAMA_3],
69
  "Aspire1.2-8B-TIES.i1-Q5_K_M.gguf": ["mradermacher/Aspire1.2-8B-TIES-i1-GGUF", MessagesFormatterType.LLAMA_3],
 
59
  "Qwen2.5-14B_Uncensored_Instruct.Q4_K_M.gguf": ["mradermacher/Qwen2.5-14B_Uncensored_Instruct-GGUF", MessagesFormatterType.OPEN_CHAT],
60
  "EVA-Qwen2.5-14B-v0.0.i1-IQ4_XS.gguf": ["mradermacher/EVA-Qwen2.5-14B-v0.0-i1-GGUF", MessagesFormatterType.OPEN_CHAT],
61
  "MN-12B-Vespa-x1.i1-Q4_K_M.gguf": ["mradermacher/MN-12B-Vespa-x1-i1-GGUF", MessagesFormatterType.CHATML],
62
+ "Mistral-Nemo-12B-ArliAI-RPMax-v1.1.i1-Q4_K_M.gguf": ["mradermacher/Mistral-Nemo-12B-ArliAI-RPMax-v1.1-i1-GGUF", MessagesFormatterType.MISTRAL],
63
  "Trinas_Nectar-8B-model_stock.i1-Q4_K_M.gguf": ["mradermacher/Trinas_Nectar-8B-model_stock-i1-GGUF", MessagesFormatterType.MISTRAL],
64
  "ChatWaifu_12B_v2.0.Q5_K_M.gguf": ["mradermacher/ChatWaifu_12B_v2.0-GGUF", MessagesFormatterType.MISTRAL],
65
  "ChatWaifu_22B_v2.0_preview.Q4_K_S.gguf": ["mradermacher/ChatWaifu_22B_v2.0_preview-GGUF", MessagesFormatterType.MISTRAL],
66
  "ChatWaifu_v1.4.Q5_K_M.gguf": ["mradermacher/ChatWaifu_v1.4-GGUF", MessagesFormatterType.MISTRAL],
67
  "ChatWaifu_v1.3.1.Q4_K_M.gguf": ["mradermacher/ChatWaifu_v1.3.1-GGUF", MessagesFormatterType.MISTRAL],
68
+ "Aster-G2-9B-v1.Q4_K_S.gguf": ["mradermacher/Aster-G2-9B-v1-GGUF", MessagesFormatterType.ALPACA],
69
+ "nemo-12b-rp-merge.Q4_K_S.gguf": ["mradermacher/nemo-12b-rp-merge-GGUF", MessagesFormatterType.MISTRAL],
70
+ "SthenoMix3.3.Q5_K_M.gguf": ["mradermacher/SthenoMix3.3-GGUF", MessagesFormatterType.LLAMA_3],
71
+ "Celestial-Harmony-14b-v1.0-Experimental-1016-Q4_K_M.gguf": ["bartowski/Celestial-Harmony-14b-v1.0-Experimental-1016-GGUF", MessagesFormatterType.MISTRAL],
72
+ "Gemma-2-Ataraxy-v4c-9B.Q4_K_M.gguf": ["mradermacher/Gemma-2-Ataraxy-v4c-9B-GGUF", MessagesFormatterType.ALPACA],
73
+ "Gemma-2-Ataraxy-v4b-9B.Q4_K_M.gguf": ["mradermacher/Gemma-2-Ataraxy-v4b-9B-GGUF", MessagesFormatterType.ALPACA],
74
+ "L3.1-EtherealRainbow-v1.0-rc1-8B.Q5_K_M.gguf": ["mradermacher/L3.1-EtherealRainbow-v1.0-rc1-8B-GGUF", MessagesFormatterType.LLAMA_3],
75
+ "MN-Lulanum-12B-FIX.i1-Q4_K_M.gguf": ["mradermacher/MN-Lulanum-12B-FIX-i1-GGUF", MessagesFormatterType.MISTRAL],
76
+ "Ministral-8B-Instruct-2410-HF-Q4_K_M.gguf": ["bartowski/Ministral-8B-Instruct-2410-HF-GGUF-TEST", MessagesFormatterType.MISTRAL],
77
+ "QevaCoT-7B-Stock.Q5_K_M.gguf": ["mradermacher/QevaCoT-7B-Stock-GGUF", MessagesFormatterType.OPEN_CHAT],
78
+ "Mixtronix-8B.i1-Q4_K_M.gguf": ["mradermacher/Mixtronix-8B-i1-GGUF", MessagesFormatterType.CHATML],
79
+ "Tsunami-0.5x-7B-Instruct.i1-Q5_K_M.gguf": ["mradermacher/Tsunami-0.5x-7B-Instruct-i1-GGUF", MessagesFormatterType.OPEN_CHAT],
80
+ "mt3-gemma-2-9b-q6_k.gguf": ["zelk12/MT3-gemma-2-9B-Q6_K-GGUF", MessagesFormatterType.ALPACA],
81
+ "NeuralDaredevil-SuperNova-Lite-7B-DARETIES-abliterated.Q5_K_M.gguf": ["mradermacher/NeuralDaredevil-SuperNova-Lite-7B-DARETIES-abliterated-GGUF", MessagesFormatterType.LLAMA_3],
82
+ "MadMix-Unleashed-12B.Q4_K_M.gguf": ["mradermacher/MadMix-Unleashed-12B-GGUF", MessagesFormatterType.MISTRAL],
83
+ "Gemma-2-Ataraxy-v4a-Advanced-9B.i1-Q4_K_M.gguf": ["mradermacher/Gemma-2-Ataraxy-v4a-Advanced-9B-i1-GGUF", MessagesFormatterType.ALPACA],
84
+ "writing-roleplay-20k-context-nemo-12b-v1.0.i1-Q4_K_M.gguf": ["mradermacher/writing-roleplay-20k-context-nemo-12b-v1.0-i1-GGUF", MessagesFormatterType.MISTRAL],
85
+ "GEMMA2-9b-Pollux-exp.Q4_K_M.gguf": ["mradermacher/GEMMA2-9b-Pollux-exp-GGUF", MessagesFormatterType.ALPACA],
86
+ "Gemma-2-Ataraxy-v4a-Advanced-9B.Q4_K_M.gguf": ["mradermacher/Gemma-2-Ataraxy-v4a-Advanced-9B-GGUF", MessagesFormatterType.ALPACA],
87
+ "llama-3.1-8b-titanfusion-mix-2.1-q4_k_m-imat.gguf": ["bunnycore/Llama-3.1-8B-TitanFusion-Mix-2.1-Q4_K_M-GGUF", MessagesFormatterType.LLAMA_3],
88
+ "Gemma-2-Ataraxy-v4-Advanced-9B.Q4_K_M.gguf": ["mradermacher/Gemma-2-Ataraxy-v4-Advanced-9B-GGUF", MessagesFormatterType.ALPACA],
89
+ "Gemma-2-9B-ArliAI-RPMax-v1.1.i1-Q4_K_S.gguf": ["mradermacher/Gemma-2-9B-ArliAI-RPMax-v1.1-i1-GGUF", MessagesFormatterType.ALPACA],
90
+ "SuperNeuralDreadDevil-8b.Q5_K_M.gguf": ["mradermacher/SuperNeuralDreadDevil-8b-GGUF", MessagesFormatterType.LLAMA_3],
91
+ "astral-fusion-neural-happy-l3.1-8b-q4_0.gguf": ["ZeroXClem/Astral-Fusion-Neural-Happy-L3.1-8B-Q4_0-GGUF", MessagesFormatterType.LLAMA_3],
92
+ "LexiMaid-L3-8B.Q5_K_M.gguf": ["mradermacher/LexiMaid-L3-8B-GGUF", MessagesFormatterType.LLAMA_3],
93
  "ModeliCo-8B.i1-Q5_K_M.gguf": ["mradermacher/ModeliCo-8B-i1-GGUF", MessagesFormatterType.LLAMA_3],
94
  "Llama3-8B-function-calling-dpo-slerp.i1-Q5_K_M.gguf": ["mradermacher/Llama3-8B-function-calling-dpo-slerp-i1-GGUF", MessagesFormatterType.LLAMA_3],
95
  "Aspire1.2-8B-TIES.i1-Q5_K_M.gguf": ["mradermacher/Aspire1.2-8B-TIES-i1-GGUF", MessagesFormatterType.LLAMA_3],
lora_dict.json CHANGED
@@ -4381,6 +4381,13 @@
4381
  "https://civitai.com/models/577378",
4382
  "https://image.civitai.com/xG1nkqKTMzGDvpLrqFT7WA/459bd20d-a9d6-4a0b-8947-7dcebc061c0f/width=450/19781986.jpeg"
4383
  ],
 
 
 
 
 
 
 
4384
  "genshin_v4": [
4385
  "hina_(genshin_impact) / sethos_(genshin_impact) / raiden_shogun_mitake",
4386
  "Pony",
 
4381
  "https://civitai.com/models/577378",
4382
  "https://image.civitai.com/xG1nkqKTMzGDvpLrqFT7WA/459bd20d-a9d6-4a0b-8947-7dcebc061c0f/width=450/19781986.jpeg"
4383
  ],
4384
+ "genbaneko_v4_illustrious_uo_1024-000040": [
4385
+ "genbaneko / cat, headwear, hat, grey headwear, baseball cap, / speech bubble, speech text,",
4386
+ "SDXL 1.0",
4387
+ "Shigotoneko(Genbaneko) Style - illustrious | \u4ed5\u4e8b\u732b\uff08\u73fe\u5834\u732b\uff09",
4388
+ "https://civitai.com/models/859355",
4389
+ "https://image.civitai.com/xG1nkqKTMzGDvpLrqFT7WA/0f145509-d867-418c-b545-0c0e49275f48/width=450/34849585.jpeg"
4390
+ ],
4391
  "genshin_v4": [
4392
  "hina_(genshin_impact) / sethos_(genshin_impact) / raiden_shogun_mitake",
4393
  "Pony",
modutils.py CHANGED
@@ -2,11 +2,16 @@ import spaces
2
  import json
3
  import gradio as gr
4
  import os
 
5
  from pathlib import Path
6
  from PIL import Image
7
- from huggingface_hub import HfApi, HfFolder, hf_hub_download, snapshot_download
 
 
 
8
  import urllib.parse
9
- import re
 
10
 
11
 
12
  from env import (HF_LORA_PRIVATE_REPOS1, HF_LORA_PRIVATE_REPOS2,
@@ -38,7 +43,6 @@ def list_sub(a, b):
38
 
39
 
40
  def is_repo_name(s):
41
- import re
42
  return re.fullmatch(r'^[^/]+?/[^/]+?$', s)
43
 
44
 
@@ -99,10 +103,12 @@ def download_hf_file(directory, url, progress=gr.Progress(track_tqdm=True)):
99
  repo_id, filename, subfolder, repo_type = split_hf_url(url)
100
  try:
101
  print(f"Downloading {url} to {directory}")
102
- if subfolder is not None: hf_hub_download(repo_id=repo_id, filename=filename, subfolder=subfolder, repo_type=repo_type, local_dir=directory, token=hf_token)
103
- else: hf_hub_download(repo_id=repo_id, filename=filename, repo_type=repo_type, local_dir=directory, token=hf_token)
 
104
  except Exception as e:
105
  print(f"Failed to download: {e}")
 
106
 
107
 
108
  def download_things(directory, url, hf_token="", civitai_api_key=""):
@@ -224,7 +230,6 @@ def save_gallery_images(images, progress=gr.Progress(track_tqdm=True)):
224
 
225
 
226
  def download_private_repo(repo_id, dir_path, is_replace):
227
- from huggingface_hub import snapshot_download
228
  if not hf_read_token: return
229
  try:
230
  snapshot_download(repo_id=repo_id, local_dir=dir_path, allow_patterns=['*.ckpt', '*.pt', '*.pth', '*.safetensors', '*.bin'], use_auth_token=hf_read_token)
@@ -263,7 +268,6 @@ def get_private_model_list(repo_id, dir_path):
263
 
264
 
265
  def download_private_file(repo_id, path, is_replace):
266
- from huggingface_hub import hf_hub_download
267
  file = Path(path)
268
  newpath = Path(f'{file.parent.name}/{escape_lora_basename(file.stem)}{file.suffix}') if is_replace else file
269
  if not hf_read_token or newpath.exists(): return
@@ -387,7 +391,9 @@ except Exception as e:
387
  loras_dict = {"None": ["", "", "", "", ""], "": ["", "", "", "", ""]} | private_lora_dict.copy()
388
  civitai_not_exists_list = []
389
  loras_url_to_path_dict = {} # {"URL to download": "local filepath", ...}
390
- civitai_lora_last_results = {} # {"URL to download": {search results}, ...}
 
 
391
  all_lora_list = []
392
 
393
 
@@ -411,9 +417,6 @@ private_lora_model_list = get_private_lora_model_lists()
411
 
412
  def get_civitai_info(path):
413
  global civitai_not_exists_list
414
- import requests
415
- from urllib3.util import Retry
416
- from requests.adapters import HTTPAdapter
417
  if path in set(civitai_not_exists_list): return ["", "", "", "", ""]
418
  if not Path(path).exists(): return None
419
  user_agent = get_user_agent()
@@ -448,7 +451,7 @@ def get_civitai_info(path):
448
 
449
 
450
  def get_lora_model_list():
451
- loras = list_uniq(get_private_lora_model_lists() + get_local_model_list(directory_loras) + DIFFUSERS_FORMAT_LORAS)
452
  loras.insert(0, "None")
453
  loras.insert(0, "")
454
  return loras
@@ -523,7 +526,6 @@ def download_lora(dl_urls: str):
523
 
524
 
525
  def copy_lora(path: str, new_path: str):
526
- import shutil
527
  if path == new_path: return new_path
528
  cpath = Path(path)
529
  npath = Path(new_path)
@@ -587,7 +589,6 @@ def get_valid_lora_path(query: str):
587
 
588
 
589
  def get_valid_lora_wt(prompt: str, lora_path: str, lora_wt: float):
590
- import re
591
  wt = lora_wt
592
  result = re.findall(f'<lora:{to_lora_key(lora_path)}:(.+?)>', prompt)
593
  if not result: return wt
@@ -596,7 +597,6 @@ def get_valid_lora_wt(prompt: str, lora_path: str, lora_wt: float):
596
 
597
 
598
  def set_prompt_loras(prompt, prompt_syntax, model_name, lora1, lora1_wt, lora2, lora2_wt, lora3, lora3_wt, lora4, lora4_wt, lora5, lora5_wt):
599
- import re
600
  if not "Classic" in str(prompt_syntax): return lora1, lora1_wt, lora2, lora2_wt, lora3, lora3_wt, lora4, lora4_wt, lora5, lora5_wt
601
  lora1 = get_valid_lora_name(lora1, model_name)
602
  lora2 = get_valid_lora_name(lora2, model_name)
@@ -716,7 +716,6 @@ def apply_lora_prompt(prompt: str = "", lora_info: str = ""):
716
 
717
 
718
  def update_loras(prompt, prompt_syntax, lora1, lora1_wt, lora2, lora2_wt, lora3, lora3_wt, lora4, lora4_wt, lora5, lora5_wt):
719
- import re
720
  on1, label1, tag1, md1 = get_lora_info(lora1)
721
  on2, label2, tag2, md2 = get_lora_info(lora2)
722
  on3, label3, tag3, md3 = get_lora_info(lora3)
@@ -763,7 +762,6 @@ def update_loras(prompt, prompt_syntax, lora1, lora1_wt, lora2, lora2_wt, lora3,
763
 
764
 
765
  def get_my_lora(link_url):
766
- from pathlib import Path
767
  before = get_local_model_list(directory_loras)
768
  for url in [url.strip() for url in link_url.split(',')]:
769
  if not Path(f"{directory_loras}/{url.split('/')[-1]}").exists():
@@ -800,7 +798,6 @@ def upload_file_lora(files, progress=gr.Progress(track_tqdm=True)):
800
 
801
 
802
  def move_file_lora(filepaths):
803
- import shutil
804
  for file in filepaths:
805
  path = Path(shutil.move(Path(file).resolve(), Path(f"./{directory_loras}").resolve()))
806
  newpath = Path(f'{path.parent.name}/{escape_lora_basename(path.stem)}{path.suffix}')
@@ -823,11 +820,13 @@ def move_file_lora(filepaths):
823
  )
824
 
825
 
 
 
 
 
 
826
  def get_civitai_info(path):
827
  global civitai_not_exists_list, loras_url_to_path_dict
828
- import requests
829
- from requests.adapters import HTTPAdapter
830
- from urllib3.util import Retry
831
  default = ["", "", "", "", ""]
832
  if path in set(civitai_not_exists_list): return default
833
  if not Path(path).exists(): return None
@@ -865,16 +864,14 @@ def get_civitai_info(path):
865
 
866
 
867
  def search_lora_on_civitai(query: str, allow_model: list[str] = ["Pony", "SDXL 1.0"], limit: int = 100,
868
- sort: str = "Highest Rated", period: str = "AllTime", tag: str = ""):
869
- import requests
870
- from requests.adapters import HTTPAdapter
871
- from urllib3.util import Retry
872
  user_agent = get_user_agent()
873
  headers = {'User-Agent': user_agent, 'content-type': 'application/json'}
874
  base_url = 'https://civitai.com/api/v1/models'
875
- params = {'types': ['LORA'], 'sort': sort, 'period': period, 'limit': limit, 'nsfw': 'true'}
876
  if query: params["query"] = query
877
  if tag: params["tag"] = tag
 
878
  session = requests.Session()
879
  retries = Retry(total=5, backoff_factor=1, status_forcelist=[500, 502, 503, 504])
880
  session.mount("https://", HTTPAdapter(max_retries=retries))
@@ -891,46 +888,129 @@ def search_lora_on_civitai(query: str, allow_model: list[str] = ["Pony", "SDXL 1
891
  for j in json['items']:
892
  for model in j['modelVersions']:
893
  item = {}
894
- if model['baseModel'] not in set(allow_model): continue
895
  item['name'] = j['name']
896
- item['creator'] = j['creator']['username']
897
- item['tags'] = j['tags']
898
- item['model_name'] = model['name']
899
- item['base_model'] = model['baseModel']
 
900
  item['dl_url'] = model['downloadUrl']
901
- item['md'] = f'<img src="{model["images"][0]["url"]}" alt="thumbnail" width="150" height="240"><br>[LoRA Model URL](https://civitai.com/models/{j["id"]})'
 
 
 
 
 
 
902
  items.append(item)
903
  return items
904
 
905
 
906
- def search_civitai_lora(query, base_model, sort="Highest Rated", period="AllTime", tag=""):
907
- global civitai_lora_last_results
908
- items = search_lora_on_civitai(query, base_model, 100, sort, period, tag)
 
 
 
909
  if not items: return gr.update(choices=[("", "")], value="", visible=False),\
910
- gr.update(value="", visible=False), gr.update(visible=True), gr.update(visible=True)
911
- civitai_lora_last_results = {}
912
  choices = []
 
913
  for item in items:
914
  base_model_name = "Pony🐴" if item['base_model'] == "Pony" else item['base_model']
915
  name = f"{item['name']} (for {base_model_name} / By: {item['creator']} / Tags: {', '.join(item['tags'])})"
916
  value = item['dl_url']
917
  choices.append((name, value))
918
- civitai_lora_last_results[value] = item
 
919
  if not choices: return gr.update(choices=[("", "")], value="", visible=False),\
920
- gr.update(value="", visible=False), gr.update(visible=True), gr.update(visible=True)
921
- result = civitai_lora_last_results.get(choices[0][1], "None")
 
 
922
  md = result['md'] if result else ""
923
  return gr.update(choices=choices, value=choices[0][1], visible=True), gr.update(value=md, visible=True),\
924
- gr.update(visible=True), gr.update(visible=True)
 
 
 
 
 
 
 
 
 
925
 
926
 
927
  def select_civitai_lora(search_result):
928
  if not "http" in search_result: return gr.update(value=""), gr.update(value="None", visible=True)
929
- result = civitai_lora_last_results.get(search_result, "None")
930
  md = result['md'] if result else ""
931
  return gr.update(value=search_result), gr.update(value=md, visible=True)
932
 
933
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
934
  LORA_BASE_MODEL_DICT = {
935
  "diffusers:StableDiffusionPipeline": ["SD 1.5"],
936
  "diffusers:StableDiffusionXLPipeline": ["Pony", "SDXL 1.0"],
@@ -1175,15 +1255,6 @@ preset_quality = {k["name"]: (k["prompt"], k["negative_prompt"]) for k in qualit
1175
 
1176
 
1177
  def process_style_prompt(prompt: str, neg_prompt: str, styles_key: str = "None", quality_key: str = "None", type: str = "Auto"):
1178
- def to_list(s):
1179
- return [x.strip() for x in s.split(",") if not s == ""]
1180
-
1181
- def list_sub(a, b):
1182
- return [e for e in a if e not in b]
1183
-
1184
- def list_uniq(l):
1185
- return sorted(set(l), key=l.index)
1186
-
1187
  animagine_ps = to_list("anime artwork, anime style, vibrant, studio anime, highly detailed, masterpiece, best quality, very aesthetic, absurdres")
1188
  animagine_nps = to_list("lowres, (bad), text, error, fewer, extra, missing, worst quality, jpeg artifacts, low quality, watermark, unfinished, displeasing, oldest, early, chromatic aberration, signature, extra digits, artistic error, username, scan, [abstract]")
1189
  pony_ps = to_list("source_anime, score_9, score_8_up, score_7_up, masterpiece, best quality, very aesthetic, absurdres")
@@ -1335,7 +1406,6 @@ def set_textual_inversion_prompt(textual_inversion_gui, prompt_gui, neg_prompt_g
1335
 
1336
 
1337
  def get_model_pipeline(repo_id: str):
1338
- from huggingface_hub import HfApi
1339
  api = HfApi(token=HF_TOKEN)
1340
  default = "StableDiffusionPipeline"
1341
  try:
 
2
  import json
3
  import gradio as gr
4
  import os
5
+ import re
6
  from pathlib import Path
7
  from PIL import Image
8
+ import shutil
9
+ import requests
10
+ from requests.adapters import HTTPAdapter
11
+ from urllib3.util import Retry
12
  import urllib.parse
13
+ import pandas as pd
14
+ from huggingface_hub import HfApi, HfFolder, hf_hub_download, snapshot_download
15
 
16
 
17
  from env import (HF_LORA_PRIVATE_REPOS1, HF_LORA_PRIVATE_REPOS2,
 
43
 
44
 
45
  def is_repo_name(s):
 
46
  return re.fullmatch(r'^[^/]+?/[^/]+?$', s)
47
 
48
 
 
103
  repo_id, filename, subfolder, repo_type = split_hf_url(url)
104
  try:
105
  print(f"Downloading {url} to {directory}")
106
+ if subfolder is not None: path = hf_hub_download(repo_id=repo_id, filename=filename, subfolder=subfolder, repo_type=repo_type, local_dir=directory, token=hf_token)
107
+ else: path = hf_hub_download(repo_id=repo_id, filename=filename, repo_type=repo_type, local_dir=directory, token=hf_token)
108
+ return path
109
  except Exception as e:
110
  print(f"Failed to download: {e}")
111
+ return None
112
 
113
 
114
  def download_things(directory, url, hf_token="", civitai_api_key=""):
 
230
 
231
 
232
  def download_private_repo(repo_id, dir_path, is_replace):
 
233
  if not hf_read_token: return
234
  try:
235
  snapshot_download(repo_id=repo_id, local_dir=dir_path, allow_patterns=['*.ckpt', '*.pt', '*.pth', '*.safetensors', '*.bin'], use_auth_token=hf_read_token)
 
268
 
269
 
270
  def download_private_file(repo_id, path, is_replace):
 
271
  file = Path(path)
272
  newpath = Path(f'{file.parent.name}/{escape_lora_basename(file.stem)}{file.suffix}') if is_replace else file
273
  if not hf_read_token or newpath.exists(): return
 
391
  loras_dict = {"None": ["", "", "", "", ""], "": ["", "", "", "", ""]} | private_lora_dict.copy()
392
  civitai_not_exists_list = []
393
  loras_url_to_path_dict = {} # {"URL to download": "local filepath", ...}
394
+ civitai_last_results = {} # {"URL to download": {search results}, ...}
395
+ civitai_last_choices = [("", "")]
396
+ civitai_last_gallery = []
397
  all_lora_list = []
398
 
399
 
 
417
 
418
  def get_civitai_info(path):
419
  global civitai_not_exists_list
 
 
 
420
  if path in set(civitai_not_exists_list): return ["", "", "", "", ""]
421
  if not Path(path).exists(): return None
422
  user_agent = get_user_agent()
 
451
 
452
 
453
  def get_lora_model_list():
454
+ loras = list_uniq(get_private_lora_model_lists() + DIFFUSERS_FORMAT_LORAS + get_local_model_list(directory_loras))
455
  loras.insert(0, "None")
456
  loras.insert(0, "")
457
  return loras
 
526
 
527
 
528
  def copy_lora(path: str, new_path: str):
 
529
  if path == new_path: return new_path
530
  cpath = Path(path)
531
  npath = Path(new_path)
 
589
 
590
 
591
  def get_valid_lora_wt(prompt: str, lora_path: str, lora_wt: float):
 
592
  wt = lora_wt
593
  result = re.findall(f'<lora:{to_lora_key(lora_path)}:(.+?)>', prompt)
594
  if not result: return wt
 
597
 
598
 
599
  def set_prompt_loras(prompt, prompt_syntax, model_name, lora1, lora1_wt, lora2, lora2_wt, lora3, lora3_wt, lora4, lora4_wt, lora5, lora5_wt):
 
600
  if not "Classic" in str(prompt_syntax): return lora1, lora1_wt, lora2, lora2_wt, lora3, lora3_wt, lora4, lora4_wt, lora5, lora5_wt
601
  lora1 = get_valid_lora_name(lora1, model_name)
602
  lora2 = get_valid_lora_name(lora2, model_name)
 
716
 
717
 
718
  def update_loras(prompt, prompt_syntax, lora1, lora1_wt, lora2, lora2_wt, lora3, lora3_wt, lora4, lora4_wt, lora5, lora5_wt):
 
719
  on1, label1, tag1, md1 = get_lora_info(lora1)
720
  on2, label2, tag2, md2 = get_lora_info(lora2)
721
  on3, label3, tag3, md3 = get_lora_info(lora3)
 
762
 
763
 
764
  def get_my_lora(link_url):
 
765
  before = get_local_model_list(directory_loras)
766
  for url in [url.strip() for url in link_url.split(',')]:
767
  if not Path(f"{directory_loras}/{url.split('/')[-1]}").exists():
 
798
 
799
 
800
  def move_file_lora(filepaths):
 
801
  for file in filepaths:
802
  path = Path(shutil.move(Path(file).resolve(), Path(f"./{directory_loras}").resolve()))
803
  newpath = Path(f'{path.parent.name}/{escape_lora_basename(path.stem)}{path.suffix}')
 
820
  )
821
 
822
 
823
+ CIVITAI_SORT = ["Highest Rated", "Most Downloaded", "Newest"]
824
+ CIVITAI_PERIOD = ["AllTime", "Year", "Month", "Week", "Day"]
825
+ CIVITAI_BASEMODEL = ["Pony", "SD 1.5", "SDXL 1.0", "Flux.1 D", "Flux.1 S"]
826
+
827
+
828
  def get_civitai_info(path):
829
  global civitai_not_exists_list, loras_url_to_path_dict
 
 
 
830
  default = ["", "", "", "", ""]
831
  if path in set(civitai_not_exists_list): return default
832
  if not Path(path).exists(): return None
 
864
 
865
 
866
  def search_lora_on_civitai(query: str, allow_model: list[str] = ["Pony", "SDXL 1.0"], limit: int = 100,
867
+ sort: str = "Highest Rated", period: str = "AllTime", tag: str = "", user: str = "", page: int = 1):
 
 
 
868
  user_agent = get_user_agent()
869
  headers = {'User-Agent': user_agent, 'content-type': 'application/json'}
870
  base_url = 'https://civitai.com/api/v1/models'
871
+ params = {'types': ['LORA'], 'sort': sort, 'period': period, 'limit': limit, 'page': int(page), 'nsfw': 'true'}
872
  if query: params["query"] = query
873
  if tag: params["tag"] = tag
874
+ if user: params["username"] = user
875
  session = requests.Session()
876
  retries = Retry(total=5, backoff_factor=1, status_forcelist=[500, 502, 503, 504])
877
  session.mount("https://", HTTPAdapter(max_retries=retries))
 
888
  for j in json['items']:
889
  for model in j['modelVersions']:
890
  item = {}
891
+ if len(allow_model) != 0 and model['baseModel'] not in set(allow_model): continue
892
  item['name'] = j['name']
893
+ item['creator'] = j['creator']['username'] if 'creator' in j.keys() and 'username' in j['creator'].keys() else ""
894
+ item['tags'] = j['tags'] if 'tags' in j.keys() else []
895
+ item['model_name'] = model['name'] if 'name' in model.keys() else ""
896
+ item['base_model'] = model['baseModel'] if 'baseModel' in model.keys() else ""
897
+ item['description'] = model['description'] if 'description' in model.keys() else ""
898
  item['dl_url'] = model['downloadUrl']
899
+ item['md'] = ""
900
+ if 'images' in model.keys() and len(model["images"]) != 0:
901
+ item['img_url'] = model["images"][0]["url"]
902
+ item['md'] += f'<img src="{model["images"][0]["url"]}#float" alt="thumbnail" width="150" height="240"><br>'
903
+ else: item['img_url'] = "/home/user/app/null.png"
904
+ item['md'] += f'''Model URL: [https://civitai.com/models/{j["id"]}](https://civitai.com/models/{j["id"]})<br>Model Name: {item["name"]}<br>
905
+ Creator: {item["creator"]}<br>Tags: {", ".join(item["tags"])}<br>Base Model: {item["base_model"]}<br>Description: {item["description"]}'''
906
  items.append(item)
907
  return items
908
 
909
 
910
+ def search_civitai_lora(query, base_model=[], sort=CIVITAI_SORT[0], period=CIVITAI_PERIOD[0], tag="", user="", gallery=[]):
911
+ global civitai_last_results, civitai_last_choices, civitai_last_gallery
912
+ civitai_last_choices = [("", "")]
913
+ civitai_last_gallery = []
914
+ civitai_last_results = {}
915
+ items = search_lora_on_civitai(query, base_model, 100, sort, period, tag, user)
916
  if not items: return gr.update(choices=[("", "")], value="", visible=False),\
917
+ gr.update(value="", visible=False), gr.update(visible=True), gr.update(visible=True), gr.update(visible=True)
918
+ civitai_last_results = {}
919
  choices = []
920
+ gallery = []
921
  for item in items:
922
  base_model_name = "Pony🐴" if item['base_model'] == "Pony" else item['base_model']
923
  name = f"{item['name']} (for {base_model_name} / By: {item['creator']} / Tags: {', '.join(item['tags'])})"
924
  value = item['dl_url']
925
  choices.append((name, value))
926
+ gallery.append((item['img_url'], name))
927
+ civitai_last_results[value] = item
928
  if not choices: return gr.update(choices=[("", "")], value="", visible=False),\
929
+ gr.update(value="", visible=False), gr.update(visible=True), gr.update(visible=True), gr.update(visible=True)
930
+ civitai_last_choices = choices
931
+ civitai_last_gallery = gallery
932
+ result = civitai_last_results.get(choices[0][1], "None")
933
  md = result['md'] if result else ""
934
  return gr.update(choices=choices, value=choices[0][1], visible=True), gr.update(value=md, visible=True),\
935
+ gr.update(visible=True), gr.update(visible=True), gr.update(value=gallery)
936
+
937
+
938
+ def update_civitai_selection(evt: gr.SelectData):
939
+ try:
940
+ selected_index = evt.index
941
+ selected = civitai_last_choices[selected_index][1]
942
+ return gr.update(value=selected)
943
+ except Exception:
944
+ return gr.update(visible=True)
945
 
946
 
947
  def select_civitai_lora(search_result):
948
  if not "http" in search_result: return gr.update(value=""), gr.update(value="None", visible=True)
949
+ result = civitai_last_results.get(search_result, "None")
950
  md = result['md'] if result else ""
951
  return gr.update(value=search_result), gr.update(value=md, visible=True)
952
 
953
 
954
+ def download_my_lora_flux(dl_urls: str, lora):
955
+ path = download_lora(dl_urls)
956
+ if path: lora = path
957
+ choices = get_all_lora_tupled_list()
958
+ return gr.update(value=lora, choices=choices)
959
+
960
+
961
+ def apply_lora_prompt_flux(lora_info: str):
962
+ if lora_info == "None": return ""
963
+ lora_tag = lora_info.replace("/",",")
964
+ lora_tags = lora_tag.split(",") if str(lora_info) != "None" else []
965
+ lora_prompts = normalize_prompt_list(lora_tags)
966
+ prompt = ", ".join(list_uniq(lora_prompts))
967
+ return prompt
968
+
969
+
970
+ def update_loras_flux(prompt, lora, lora_wt):
971
+ on, label, tag, md = get_lora_info(lora)
972
+ choices = get_all_lora_tupled_list()
973
+ return gr.update(value=prompt), gr.update(value=lora, choices=choices), gr.update(value=lora_wt),\
974
+ gr.update(value=tag, label=label, visible=on), gr.update(value=md, visible=on)
975
+
976
+
977
+ def search_civitai_lora_json(query, base_model):
978
+ results = {}
979
+ items = search_lora_on_civitai(query, base_model)
980
+ if not items: return gr.update(value=results)
981
+ for item in items:
982
+ results[item['dl_url']] = item
983
+ return gr.update(value=results)
984
+
985
+
986
+ def get_civitai_tag():
987
+ default = [""]
988
+ user_agent = get_user_agent()
989
+ headers = {'User-Agent': user_agent, 'content-type': 'application/json'}
990
+ base_url = 'https://civitai.com/api/v1/tags'
991
+ params = {'limit': 200}
992
+ session = requests.Session()
993
+ retries = Retry(total=5, backoff_factor=1, status_forcelist=[500, 502, 503, 504])
994
+ session.mount("https://", HTTPAdapter(max_retries=retries))
995
+ url = base_url
996
+ try:
997
+ r = session.get(url, params=params, headers=headers, stream=True, timeout=(3.0, 15))
998
+ if not r.ok: return default
999
+ j = dict(r.json()).copy()
1000
+ if "items" not in j.keys(): return default
1001
+ items = []
1002
+ for item in j["items"]:
1003
+ items.append([str(item.get("name", "")), int(item.get("modelCount", 0))])
1004
+ df = pd.DataFrame(items)
1005
+ df.sort_values(1, ascending=False)
1006
+ tags = df.values.tolist()
1007
+ tags = [""] + [l[0] for l in tags]
1008
+ return tags
1009
+ except Exception as e:
1010
+ print(e)
1011
+ return default
1012
+
1013
+
1014
  LORA_BASE_MODEL_DICT = {
1015
  "diffusers:StableDiffusionPipeline": ["SD 1.5"],
1016
  "diffusers:StableDiffusionXLPipeline": ["Pony", "SDXL 1.0"],
 
1255
 
1256
 
1257
  def process_style_prompt(prompt: str, neg_prompt: str, styles_key: str = "None", quality_key: str = "None", type: str = "Auto"):
 
 
 
 
 
 
 
 
 
1258
  animagine_ps = to_list("anime artwork, anime style, vibrant, studio anime, highly detailed, masterpiece, best quality, very aesthetic, absurdres")
1259
  animagine_nps = to_list("lowres, (bad), text, error, fewer, extra, missing, worst quality, jpeg artifacts, low quality, watermark, unfinished, displeasing, oldest, early, chromatic aberration, signature, extra digits, artistic error, username, scan, [abstract]")
1260
  pony_ps = to_list("source_anime, score_9, score_8_up, score_7_up, masterpiece, best quality, very aesthetic, absurdres")
 
1406
 
1407
 
1408
  def get_model_pipeline(repo_id: str):
 
1409
  api = HfApi(token=HF_TOKEN)
1410
  default = "StableDiffusionPipeline"
1411
  try:
null.png ADDED