|
import gradio as gr |
|
import numpy as np |
|
import torch |
|
from transformers import SiglipImageProcessor, SiglipVisionModel |
|
from PIL import Image |
|
from sklearn.metrics.pairwise import cosine_similarity |
|
import torch.nn as nn |
|
import torch.nn.functional as F |
|
|
|
device = torch.device('cpu') |
|
torch.set_num_threads(4) |
|
selected_model = SiglipVisionModel.from_pretrained('google/siglip-so400m-patch14-384', attn_implementation="sdpa" ).to(device) |
|
processor = SiglipImageProcessor.from_pretrained('google/siglip-so400m-patch14-384') |
|
|
|
class MLP(nn.Module): |
|
def __init__(self, input_size, xcol='emb', ycol='avg_rating'): |
|
super().__init__() |
|
self.input_size = input_size |
|
self.xcol = xcol |
|
self.ycol = ycol |
|
self.layers = nn.Sequential( |
|
nn.Linear(self.input_size, 2048), |
|
nn.LayerNorm(2048), |
|
nn.Mish(), |
|
nn.Dropout(0.2), |
|
nn.Linear(2048, 512), |
|
nn.LayerNorm(512), |
|
nn.Mish(), |
|
nn.Linear(512, 128), |
|
nn.LayerNorm(128), |
|
nn.Mish(), |
|
nn.Linear(128, 1) |
|
) |
|
|
|
def forward(self, x): |
|
return self.layers(x) |
|
|
|
mlp = MLP(1152) |
|
mlp.load_state_dict(torch.load("./aesthetic_predictor_siglip_huber_v1_ad_mlp_ep20.pth", map_location=torch.device('cpu'))) |
|
mlp.to(device).eval() |
|
|
|
def normalized(a, axis=-1, order=2): |
|
l2 = np.atleast_1d(np.linalg.norm(a, order, axis)) |
|
l2[l2 == 0] = 1 |
|
return a / np.expand_dims(l2, axis) |
|
|
|
def process_image(image, processor, model, device): |
|
images = image.convert('RGBA') |
|
background = Image.new('RGBA', images.size, (255, 255, 255, 255)) |
|
images = Image.alpha_composite(background, images).convert('RGB') |
|
|
|
inputs = processor(images, return_tensors="pt").to(device) |
|
|
|
with torch.no_grad(): |
|
outputs = model(**inputs) |
|
pooler_output = outputs.pooler_output |
|
im_emb_arr = pooler_output.cpu().detach().numpy() |
|
im_emb_arr = normalized(im_emb_arr) |
|
prediction = mlp(torch.from_numpy(im_emb_arr).to(device).type(torch.FloatTensor)) |
|
prediction_value = prediction.item() |
|
return im_emb_arr, prediction_value |
|
|
|
|
|
def infer(image1, image2): |
|
try: |
|
|
|
features1, prediction_value1 = process_image(image1, processor, selected_model, device) |
|
features2, prediction_value2 = process_image(image2, processor, selected_model, device) |
|
|
|
cos_sim_features = cosine_similarity(features1, features2)[0][0] |
|
|
|
return cos_sim_features, prediction_value1, prediction_value2 |
|
except Exception as e: |
|
print(f"Error during inference: {e}") |
|
return "Error", "Error", "Error" |
|
|
|
|
|
with gr.Blocks() as iface: |
|
gr.Markdown("# Image Aesthetic Predictor\nUpload two images to calculate aesthetic score.") |
|
with gr.Row(): |
|
image1 = gr.Image(type="pil") |
|
image2 = gr.Image(type="pil") |
|
with gr.Row(): |
|
prediction1 = gr.Textbox(label="Aesthetic Score 1") |
|
prediction2 = gr.Textbox(label="Aesthetic Score 2") |
|
with gr.Row(): |
|
feature_similarity = gr.Textbox(label="Feature Similarity") |
|
with gr.Row(): |
|
submit_btn = gr.Button("Submit") |
|
|
|
submit_btn.click(infer, inputs=[image1, image2], outputs=[feature_similarity, prediction1, prediction2]) |
|
|
|
iface.queue(max_size=10) |
|
iface.launch() |