import numpy as np import torch from huggan.pytorch.lightweight_gan.lightweight_gan import LightweightGAN from transformers import AutoModel ## Cargamos el modelo desde el Hub de Hugging Face def carga_modelo(repo_id, token): return AutoModel.from_pretrained(repo_id, use_auth_token=token) # def carga_modelo(model_name='ceyda/butterfly_cropped_uniq1K_512', model_version=None): # gan = LightweightGAN.from_pretrained(model_name, version=model_version) # gan.eval() # return gan def genera(gan, batch_size=1): with torch.no_grad(): ims = gan.G(torch.randn(batch_size, gan.latent_dim)).clamp(0.0, 1.0) * 255 ims = ims.permute(0,2,3,1).deatch().cpu().numpy().astype(np.unit8) return ims