import gradio as gr from rapid_undistorted.inference import InferenceEngine from rapid_unwrap.inference import DocUnwrapper import numpy as np # 初始化模型 engine = InferenceEngine() # 添加示例 example_images = [ "images/demo.jpg", "images/demo1.jpg", "images/demo1.png", "images/demo2.png", "images/demo3.jpg", ] # 定义任务和模型选项 tasks = { "unwrap": ["UVDoc", None], "unshadow": ["GCDnet", None], "unblur": ["OpenCvBilateral", "NAFDPM", None] } def process_image(img_path, unwrap_model, unshadow_model, unblur_model): task_list = [] if unwrap_model: task_list.append(("unwrap", unwrap_model)) if unshadow_model: task_list.append(("unshadow", unshadow_model)) if unblur_model: task_list.append(("unblur", unblur_model)) unwrapped_img, elapse = engine(img_path, task_list) print(f"doc unwrap elapse: {elapse}") return unwrapped_img.astype(np.uint8),elapse def main(): # 定义Gradio界面 with gr.Blocks(css=""" .scrollable-container { overflow-x: auto; white-space: nowrap; } .header-links { text-align: center; } .header-links a { display: inline-block; text-align: center; margin-right: 10px; /* 调整间距 */ } """) as demo: gr.HTML( "

RapidUnDistort

" ) gr.HTML(''' ''') with gr.Row(): with gr.Column(scale=1): # 左边占1/3 img_input = gr.Image(label="Upload or Select Image", sources="upload", value="images/demo1.jpg") # 示例图片选择器 examples = gr.Examples( examples=example_images, examples_per_page=len(example_images), inputs=img_input, fn=lambda x: x, # 简单返回图片路径 outputs=img_input, cache_examples=False ) unwrap_dropdown = gr.Dropdown(label="Select Unwrap Model", choices=tasks["unwrap"], value="UVDoc") unshadow_dropdown = gr.Dropdown(label="Select Unshadow Model", choices=tasks["unshadow"], value="GCDnet") unblur_dropdown = gr.Dropdown(label="Select Unblur Model", choices=tasks["unblur"], value="OpenCvBilateral") run_button = gr.Button("summit") with gr.Column(scale=2): # 右边占2/3 output_image = gr.Image(label="output") elapse_textbox = gr.Textbox(label="Elapsed Time", interactive=False) # 绑定按钮点击事件 run_button.click(fn=process_image, inputs=[img_input, unwrap_dropdown, unshadow_dropdown, unblur_dropdown],outputs=[output_image, elapse_textbox]) # 启动应用 demo.launch() if __name__ == '__main__': main()