import re import streamlit as st import torch from transformers import PreTrainedTokenizerFast, BartForConditionalGeneration # Dictionary for SU(3)/SU(2) latex representations rep_tex_dict = { "SU3": {"-3": r"\bar{\textbf{3}}", "3": r"\textbf{3}"}, "SU2": {"-2": r"\textbf{2}", "2": r"\textbf{2}", "-3": r"\textbf{3}", "3": r"\textbf{3}"}, } def fieldobj_to_tex(obj, lor_index, pos): su3 = None su2 = None u1 = None hel = None sp = None obj_mod = obj.copy() for tok in obj: if "SU3" in tok: su3 = tok.split("=")[-1] obj_mod.remove(tok) if "SU2" in tok: su2 = tok.split("=")[-1] obj_mod.remove(tok) if "U1" in tok: u1 = tok.split("=")[-1] obj_mod.remove(tok) if "HELICITY" in tok: hel = tok.split("=")[-1] if hel == "1": hel = "+1" if "SPIN" in tok: sp = tok.split("=")[-1] assert sp is not None outtex = "" if sp == "0": outtex += r"\phi" if sp == "1": outtex += "A" + pos + lor_index if sp == "1/2": outtex += r"\psi" outtex += r"_{(" # SU(3) if su3 is not None: outtex += rep_tex_dict["SU3"].get(su3, r"\textbf{1}") + " ," else: outtex += r"\textbf{1}," # SU(2) if su2 is not None: outtex += rep_tex_dict["SU2"].get(su2, r"\textbf{1}") + " ," else: outtex += r"\textbf{1}," # U(1) if u1 is not None: outtex += u1 + " ," else: outtex += r"\textbf{0}," # Helicity if hel is not None: outtex += "h:" + hel + " ," # Finish out subscript if outtex[-1] == ",": outtex = outtex[:-1] + ")}" return outtex def derobj_to_tex(obj, lor_index, pos): if pos == "^": outtex = f"D^{{{lor_index}}}_{{(" elif pos == "_": outtex = f"D_{{{lor_index}}}^{{(" else: raise ValueError("pos must be ^ or _") if "SU3" not in obj and "SU2" not in obj and "U1" not in obj: # Just partial derivative if pos == "^": return f"\\partial^{lor_index}" else: return f"\\partial_{lor_index}" if "SU3" in obj: outtex += "SU3," if "SU2" in obj: outtex += "SU2," if "U1" in obj: outtex += "U1," if outtex[-1] == ",": outtex = outtex[:-1] + ")}" return outtex def gamobj_to_tex(obj, lor_index, pos): return r"\sigma" + pos + lor_index def obj_to_tex(obj, lor_index="\mu", pos="^"): # Convert tuple/strings to a list of tokens if isinstance(obj, tuple): obj = list(obj) if isinstance(obj, str): obj = [i for i in obj.split(" ") if i != ""] # Basic tokens if obj[0] == "+": return r"\quad\quad+" if obj[0] == "-": return r"\quad\quad-" if obj[0] == "i": return "i" # Field if obj[0] == "FIELD": return fieldobj_to_tex(obj, lor_index, pos) # Derivative if obj[0] == "DERIVATIVE": return derobj_to_tex(obj, lor_index, pos) # Sigma (gamma matrices) if obj[0] == "SIGMA": return gamobj_to_tex(obj, lor_index, pos) # Combined COMMUTATOR + DERIVATIVE tokens if obj[0] == "COMMUTATOR_ADERIVATIVE": new_obj = obj[:] new_obj[0] = "DERIVATIVE" return "[ " + derobj_to_tex(new_obj, lor_index, pos) if obj[0] == "COMMUTATOR_BDERIVATIVE": new_obj = obj[:] new_obj[0] = "DERIVATIVE" return ", " + derobj_to_tex(new_obj, lor_index, pos) + " ]" # Single COMMUTATOR tokens if obj[0] == "COMMUTATOR_A": return "[ " + derobj_to_tex(obj, lor_index, pos) if obj[0] == "COMMUTATOR_B": return ", " + derobj_to_tex(obj, lor_index, pos) + " ]" # Fallback for unrecognized tokens if you like: # return f"\\text{{Unhandled}}({obj})" return "" def split_with_delimiter_preserved(string, delimiters, ignore_dots=False): """ Splits a string using the given delimiters, while preserving them as separate tokens. """ if "." in string and not ignore_dots: raise ValueError("Unexpected ending to the generated Lagrangian") pattern = '(' + '|'.join(map(re.escape, delimiters)) + ')' parts = re.split(pattern, string) # Turn a lonely "+ " into " + " parts = [" + " if p == "+ " else p for p in parts] # Remove empty entries parts = [p for p in parts if p != ""] return parts def clean_split(inlist, delimiters): """ Merges an immediate delimiter with its next token so that "FIELD " + "SPIN" -> "FIELD SPIN". """ i = 0 merged_list = [] while i < len(inlist): if inlist[i] in delimiters: if i < len(inlist) - 1: merged_list.append(inlist[i] + inlist[i+1]) i += 1 else: merged_list.append(inlist[i]) else: merged_list.append(inlist[i]) i += 1 return merged_list def get_obj_dict(inlist): outdict = {} for iitem in inlist: idict = {"ID": None, "LATEX": None} # Find any ID=... string item_parts = iitem.split() the_ids = [x for x in item_parts if x.startswith("ID")] if the_ids: idict["ID"] = the_ids[0] # Always compute LATEX from obj_to_tex idict["LATEX"] = obj_to_tex(iitem, "\\mu", "^") outdict[iitem] = idict return outdict def get_con_dict(inlist): """ For a list of 'contractions' tokens, produce a dictionary of which IDs are to be contracted under LORENTZ, SU2, or SU3. """ outdict = {} for iitem in inlist: tokens = iitem.split() tokens = [t for t in tokens if t != ""] sym = [t for t in tokens if ("SU" in t or "LORENTZ" in t)] assert len(sym) == 1, "More than one symmetry in contraction" ids = [t for t in tokens if ("SU" not in t and "LZ" not in t)] if sym[0] not in outdict: outdict[sym[0]] = [ids] else: outdict[sym[0]].append(ids) return outdict def term_to_tex(term, verbose=True): """ Converts one Lagrangian term into its LaTeX representation. """ # Clean up certain strings term = term.replace(".", "").replace(" = ", "=").replace(" =- ", "=-") term = term.replace(" / ", "/") term = term.replace("COMMUTATOR_A DERIVATIVE", "COMMUTATOR_ADERIVATIVE") term = term.replace("COMMUTATOR_B DERIVATIVE", "COMMUTATOR_BDERIVATIVE") # Split into sub-tokens term = split_with_delimiter_preserved( term, [" FIELD ", " DERIVATIVE ", " SIGMA ", " COMMUTATOR_ADERIVATIVE ", " COMMUTATOR_BDERIVATIVE ", " CONTRACTIONS "] ) term = clean_split( term, [" FIELD ", " DERIVATIVE ", " SIGMA ", " COMMUTATOR_ADERIVATIVE ", " COMMUTATOR_BDERIVATIVE ", " CONTRACTIONS "] ) if verbose: print(term) # If it's just +, -, or i, return that token if term in [[" + "], [" - "], [" i "]]: return term[0] # Build dictionary for objects that aren't in "CONTRACTIONS" objdict = get_obj_dict([t for t in term if " CONTRACTIONS " not in t]) if verbose: for k, v in objdict.items(): print(k, "\t\t", v) # Contractions contractions = [t for t in term if " CONTRACTIONS " in t] if len(contractions) > 1: raise ValueError("More than one contraction in term") if len(contractions) == 1 and contractions != [" CONTRACTIONS "]: # e.g. "LORENTZ ID5 ID2", etc. c_str = contractions[0] c_str = split_with_delimiter_preserved(c_str, [" LORENTZ ", " SU2 ", " SU3 "]) c_str = clean_split(c_str, [" LORENTZ ", " SU2 ", " SU3 "]) c_str = [i for i in c_str if i != " CONTRACTIONS"] condict = get_con_dict(c_str) if verbose: print(condict) # LORENTZ contraction handling if "LORENTZ" in condict: firstlz = True cma = True for con in condict["LORENTZ"]: for kobj, iobj in objdict.items(): if iobj["ID"] is None: continue if iobj["ID"] in con: if cma: lsymb = r"\mu" else: lsymb = r"\nu" if firstlz: iobj["LATEX"] = obj_to_tex(kobj, lsymb, "^") firstlz = False else: iobj["LATEX"] = obj_to_tex(kobj, lsymb, "_") cma = False firstlz = True # Join the final LaTeX strings outstr = " ".join([objdict[t]["LATEX"] for t in term if " CONTRACTIONS " not in t]) return outstr def str_tex(instr, num=0): """ Convert list of terms into complete LaTeX lines for the Lagrangian. """ if num != 0: instr = instr[:num] inlist = [term.replace(".", "") for term in instr] outstr = "" coup = 0 mass = 0 outstr = r"\begin{aligned}" for i, iterm in enumerate(inlist): if i == 0: outstr += r" \mathcal{L}= \quad \\ & " else: # Identify coupling or mass terms by counting spin-0 fields nqf = iterm.count("FIELD SPIN = 0") nD = iterm.count(" DERIVATIVE ") if nqf != 0 and nqf != 2 and nD == 0: coup += 1 outstr += rf" \lambda_{{{coup}}} \," if nqf == 2 and nD == 0: mass += 1 outstr += rf" m^2_{{{mass}}} \," outstr += term_to_tex(iterm, False) + r" \quad " if i % 4 == 0: outstr += r" \\ \\ & " return outstr def master_str_tex(iinstr): """ Master function that splits the incoming string, tries to render the full Lagrangian, and catches errors if the model text is truncated. """ instr = split_with_delimiter_preserved(iinstr, [" + ", "+ ", " - "]) try: outstr = str_tex(instr) except Exception as e: # If an error occurs, try ignoring the last token outstr = str_tex(instr, -1) outstr += " \\cdots" print(e) outstr += r"\end{aligned}" return outstr # --------------------------------------------------------------------------------- # Model loading device = 'cpu' model_name = "JoseEliel/BART-Lagrangian" @st.cache_resource def load_model(): model = BartForConditionalGeneration.from_pretrained(model_name).to(device) return model @st.cache_resource def load_tokenizer(): return PreTrainedTokenizerFast.from_pretrained(model_name) model = load_model() hf_tokenizer = load_tokenizer() # --------------------------------------------------------------------------------- # Text processing wrappers def process_input(input_text): # Sort fields so generation is consistent input_text = input_text.replace("[SOS]", "").replace("[EOS]", "").replace("FIELD", "SPLITFIELD") fields = input_text.split("SPLIT")[1:] fields = [x.strip().split(" ") for x in fields] fields = sorted(fields) fields = "[SOS] " + " ".join([" ".join(x) for x in fields]) + " [EOS]" return fields def process_output(output_text): # Remove special tokens from model output return output_text.replace("[SOS]", "").replace("[EOS]", "").replace(".", "") def reformat_expression(s): # e.g. turn SU2= -1 into SU2=-1, remove spaces return re.sub(r"(SU[23]|U1|SPIN|HEL)\s+([+-]?\s*\d+)", lambda m: f"{m.group(1)} = {m.group(2).replace(' ', '')}", s) def generate_lagrangian(input_text): """ Calls the model to produce a Lagrangian for the user-given fields. """ input_text = process_input(input_text) inputs = hf_tokenizer([input_text], return_tensors='pt').to(device) with st.spinner("Generating Lagrangian..."): lagrangian_ids = model.generate(inputs['input_ids'], max_length=2048) lagrangian = hf_tokenizer.decode(lagrangian_ids[0].tolist(), skip_special_tokens=False) lagrangian = process_output(lagrangian) return lagrangian def generate_field(sp, su2, su3, u1): """ Builds a single field string with the chosen spin and gauge charges. """ components = [f"FIELD SPIN={sp}"] # For spin = 1/2, optionally add helicity if sp == "1/2": components = [f"FIELD SPIN={sp} HEL=1/2"] if su2 != "$1$": components.append(f"SU2={su2}") if su3 == "$\\bar{{3}}$": components.append("SU3=-3") elif su3 != "$1$": components.append(f"SU3={su3.replace('$','')}") if u1 != "0": components.append(f"U1={u1}") return " ".join(components).replace("$", "") # --------------------------------------------------------------------------------- # Streamlit GUI def main(): st.title("$\\mathscr{L}$agrangian Generator") st.markdown(" ### For a set of chosen fields, this model generates the corresponding Lagrangian which encodes all interactions and dynamics of the fields.") st.markdown(" #### This is a demo of our [BART](https://arxiv.org/abs/1910.13461)-based model with ca 360M parameters") st.markdown(" #### Details about the model, training, and evaluation can be found in our [paper](https://arxiv.org/abs/2501.09729).") st.markdown(" ##### :violet[Due to computational resources, we limit the number of fields to 3. Some features in the LaTeX rendering (such as daggers) are not supported in the current version and helicity is always 1/2 (to be updated).]") st.markdown(" ##### Choose up to three different fields:") su2_options = ["$1$", "$2$", "$3$"] su3_options = ["$1$", "$3$", "$\\bar{3}$"] u1_options = ["-1", "-2/3", "-1/2", "-1/3", "0", "1/3", "1/2", "2/3", "1"] spin_options = ["0", "1/2"] if "count" not in st.session_state: st.session_state.count = 0 if "field_strings" not in st.session_state: st.session_state.field_strings = [] with st.form("field_selection"): spin_selection = st.radio("Select spin value:", spin_options) su2_selection = st.radio("Select SU(2) value:", su2_options) su3_selection = st.radio("Select SU(3) value:", su3_options) u1_selection = st.radio("Select U(1) value:", u1_options) submitted = st.form_submit_button("Add field") if submitted: if st.session_state.count < 3: fs = generate_field(spin_selection, su2_selection, su3_selection, u1_selection) st.session_state.field_strings.append(fs) st.session_state.count += 1 else: st.write("Maximum of 3 fields for this demo.") clear_fields = st.button("Clear fields") if clear_fields: st.session_state.field_strings = [] st.session_state.count = 0 # Display current fields st.write("Input Fields:") for i, fs in enumerate(st.session_state.field_strings, 1): texfield = obj_to_tex(fs) st.latex(r"\text{Field " + str(i) + ":} \quad " + texfield) # Generate Lagrangian button if st.button("Generate Lagrangian"): input_fields = " ".join(st.session_state.field_strings) if input_fields.strip() == "": st.write("Please add at least one field before generating the Lagrangian.") return input_fields = input_fields.replace("=", " ") input_fields = "[SOS] " + input_fields + " [EOS]" generated_lagrangian = generate_lagrangian(input_fields) generated_lagrangian = reformat_expression(generated_lagrangian) print(generated_lagrangian) # Attempt to render as LaTeX latex_output = master_str_tex(generated_lagrangian[1:]) st.latex(latex_output) st.markdown("### Contact") st.markdown("For questions/suggestions, email us: [Eliel](mailto:eliel.camargo-molina@physics.uu.se) or [Yong Sheng](mailto:yongsheng.koay@physics.uu.se).") if __name__ == "__main__": main()