Jun1113 commited on
Commit
484b605
1 Parent(s): 8d84f5e

Upload folder using huggingface_hub

Browse files
.gitignore ADDED
@@ -0,0 +1,19 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ __pycache__/
2
+ *.npy
3
+ *.npz
4
+ *.pyc
5
+ *.pyd
6
+ *.so
7
+ *.ipynb
8
+ .ipynb_checkpoints
9
+ models/base_models/*
10
+ !models/base_models/.gitkeep
11
+ models/lora_weights/*
12
+ !models/lora_weights/.gitkeep
13
+ outputs/*
14
+ !outputs/.gitkeep
15
+ data/*
16
+ !data/.gitkeep
17
+ wandb/
18
+ flagged/
19
+ .DS_Store
LICENSE ADDED
@@ -0,0 +1,674 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ GNU GENERAL PUBLIC LICENSE
2
+ Version 3, 29 June 2007
3
+
4
+ Copyright (C) 2007 Free Software Foundation, Inc. <https://fsf.org/>
5
+ Everyone is permitted to copy and distribute verbatim copies
6
+ of this license document, but changing it is not allowed.
7
+
8
+ Preamble
9
+
10
+ The GNU General Public License is a free, copyleft license for
11
+ software and other kinds of works.
12
+
13
+ The licenses for most software and other practical works are designed
14
+ to take away your freedom to share and change the works. By contrast,
15
+ the GNU General Public License is intended to guarantee your freedom to
16
+ share and change all versions of a program--to make sure it remains free
17
+ software for all its users. We, the Free Software Foundation, use the
18
+ GNU General Public License for most of our software; it applies also to
19
+ any other work released this way by its authors. You can apply it to
20
+ your programs, too.
21
+
22
+ When we speak of free software, we are referring to freedom, not
23
+ price. Our General Public Licenses are designed to make sure that you
24
+ have the freedom to distribute copies of free software (and charge for
25
+ them if you wish), that you receive source code or can get it if you
26
+ want it, that you can change the software or use pieces of it in new
27
+ free programs, and that you know you can do these things.
28
+
29
+ To protect your rights, we need to prevent others from denying you
30
+ these rights or asking you to surrender the rights. Therefore, you have
31
+ certain responsibilities if you distribute copies of the software, or if
32
+ you modify it: responsibilities to respect the freedom of others.
33
+
34
+ For example, if you distribute copies of such a program, whether
35
+ gratis or for a fee, you must pass on to the recipients the same
36
+ freedoms that you received. You must make sure that they, too, receive
37
+ or can get the source code. And you must show them these terms so they
38
+ know their rights.
39
+
40
+ Developers that use the GNU GPL protect your rights with two steps:
41
+ (1) assert copyright on the software, and (2) offer you this License
42
+ giving you legal permission to copy, distribute and/or modify it.
43
+
44
+ For the developers' and authors' protection, the GPL clearly explains
45
+ that there is no warranty for this free software. For both users' and
46
+ authors' sake, the GPL requires that modified versions be marked as
47
+ changed, so that their problems will not be attributed erroneously to
48
+ authors of previous versions.
49
+
50
+ Some devices are designed to deny users access to install or run
51
+ modified versions of the software inside them, although the manufacturer
52
+ can do so. This is fundamentally incompatible with the aim of
53
+ protecting users' freedom to change the software. The systematic
54
+ pattern of such abuse occurs in the area of products for individuals to
55
+ use, which is precisely where it is most unacceptable. Therefore, we
56
+ have designed this version of the GPL to prohibit the practice for those
57
+ products. If such problems arise substantially in other domains, we
58
+ stand ready to extend this provision to those domains in future versions
59
+ of the GPL, as needed to protect the freedom of users.
60
+
61
+ Finally, every program is threatened constantly by software patents.
62
+ States should not allow patents to restrict development and use of
63
+ software on general-purpose computers, but in those that do, we wish to
64
+ avoid the special danger that patents applied to a free program could
65
+ make it effectively proprietary. To prevent this, the GPL assures that
66
+ patents cannot be used to render the program non-free.
67
+
68
+ The precise terms and conditions for copying, distribution and
69
+ modification follow.
70
+
71
+ TERMS AND CONDITIONS
72
+
73
+ 0. Definitions.
74
+
75
+ "This License" refers to version 3 of the GNU General Public License.
76
+
77
+ "Copyright" also means copyright-like laws that apply to other kinds of
78
+ works, such as semiconductor masks.
79
+
80
+ "The Program" refers to any copyrightable work licensed under this
81
+ License. Each licensee is addressed as "you". "Licensees" and
82
+ "recipients" may be individuals or organizations.
83
+
84
+ To "modify" a work means to copy from or adapt all or part of the work
85
+ in a fashion requiring copyright permission, other than the making of an
86
+ exact copy. The resulting work is called a "modified version" of the
87
+ earlier work or a work "based on" the earlier work.
88
+
89
+ A "covered work" means either the unmodified Program or a work based
90
+ on the Program.
91
+
92
+ To "propagate" a work means to do anything with it that, without
93
+ permission, would make you directly or secondarily liable for
94
+ infringement under applicable copyright law, except executing it on a
95
+ computer or modifying a private copy. Propagation includes copying,
96
+ distribution (with or without modification), making available to the
97
+ public, and in some countries other activities as well.
98
+
99
+ To "convey" a work means any kind of propagation that enables other
100
+ parties to make or receive copies. Mere interaction with a user through
101
+ a computer network, with no transfer of a copy, is not conveying.
102
+
103
+ An interactive user interface displays "Appropriate Legal Notices"
104
+ to the extent that it includes a convenient and prominently visible
105
+ feature that (1) displays an appropriate copyright notice, and (2)
106
+ tells the user that there is no warranty for the work (except to the
107
+ extent that warranties are provided), that licensees may convey the
108
+ work under this License, and how to view a copy of this License. If
109
+ the interface presents a list of user commands or options, such as a
110
+ menu, a prominent item in the list meets this criterion.
111
+
112
+ 1. Source Code.
113
+
114
+ The "source code" for a work means the preferred form of the work
115
+ for making modifications to it. "Object code" means any non-source
116
+ form of a work.
117
+
118
+ A "Standard Interface" means an interface that either is an official
119
+ standard defined by a recognized standards body, or, in the case of
120
+ interfaces specified for a particular programming language, one that
121
+ is widely used among developers working in that language.
122
+
123
+ The "System Libraries" of an executable work include anything, other
124
+ than the work as a whole, that (a) is included in the normal form of
125
+ packaging a Major Component, but which is not part of that Major
126
+ Component, and (b) serves only to enable use of the work with that
127
+ Major Component, or to implement a Standard Interface for which an
128
+ implementation is available to the public in source code form. A
129
+ "Major Component", in this context, means a major essential component
130
+ (kernel, window system, and so on) of the specific operating system
131
+ (if any) on which the executable work runs, or a compiler used to
132
+ produce the work, or an object code interpreter used to run it.
133
+
134
+ The "Corresponding Source" for a work in object code form means all
135
+ the source code needed to generate, install, and (for an executable
136
+ work) run the object code and to modify the work, including scripts to
137
+ control those activities. However, it does not include the work's
138
+ System Libraries, or general-purpose tools or generally available free
139
+ programs which are used unmodified in performing those activities but
140
+ which are not part of the work. For example, Corresponding Source
141
+ includes interface definition files associated with source files for
142
+ the work, and the source code for shared libraries and dynamically
143
+ linked subprograms that the work is specifically designed to require,
144
+ such as by intimate data communication or control flow between those
145
+ subprograms and other parts of the work.
146
+
147
+ The Corresponding Source need not include anything that users
148
+ can regenerate automatically from other parts of the Corresponding
149
+ Source.
150
+
151
+ The Corresponding Source for a work in source code form is that
152
+ same work.
153
+
154
+ 2. Basic Permissions.
155
+
156
+ All rights granted under this License are granted for the term of
157
+ copyright on the Program, and are irrevocable provided the stated
158
+ conditions are met. This License explicitly affirms your unlimited
159
+ permission to run the unmodified Program. The output from running a
160
+ covered work is covered by this License only if the output, given its
161
+ content, constitutes a covered work. This License acknowledges your
162
+ rights of fair use or other equivalent, as provided by copyright law.
163
+
164
+ You may make, run and propagate covered works that you do not
165
+ convey, without conditions so long as your license otherwise remains
166
+ in force. You may convey covered works to others for the sole purpose
167
+ of having them make modifications exclusively for you, or provide you
168
+ with facilities for running those works, provided that you comply with
169
+ the terms of this License in conveying all material for which you do
170
+ not control copyright. Those thus making or running the covered works
171
+ for you must do so exclusively on your behalf, under your direction
172
+ and control, on terms that prohibit them from making any copies of
173
+ your copyrighted material outside their relationship with you.
174
+
175
+ Conveying under any other circumstances is permitted solely under
176
+ the conditions stated below. Sublicensing is not allowed; section 10
177
+ makes it unnecessary.
178
+
179
+ 3. Protecting Users' Legal Rights From Anti-Circumvention Law.
180
+
181
+ No covered work shall be deemed part of an effective technological
182
+ measure under any applicable law fulfilling obligations under article
183
+ 11 of the WIPO copyright treaty adopted on 20 December 1996, or
184
+ similar laws prohibiting or restricting circumvention of such
185
+ measures.
186
+
187
+ When you convey a covered work, you waive any legal power to forbid
188
+ circumvention of technological measures to the extent such circumvention
189
+ is effected by exercising rights under this License with respect to
190
+ the covered work, and you disclaim any intention to limit operation or
191
+ modification of the work as a means of enforcing, against the work's
192
+ users, your or third parties' legal rights to forbid circumvention of
193
+ technological measures.
194
+
195
+ 4. Conveying Verbatim Copies.
196
+
197
+ You may convey verbatim copies of the Program's source code as you
198
+ receive it, in any medium, provided that you conspicuously and
199
+ appropriately publish on each copy an appropriate copyright notice;
200
+ keep intact all notices stating that this License and any
201
+ non-permissive terms added in accord with section 7 apply to the code;
202
+ keep intact all notices of the absence of any warranty; and give all
203
+ recipients a copy of this License along with the Program.
204
+
205
+ You may charge any price or no price for each copy that you convey,
206
+ and you may offer support or warranty protection for a fee.
207
+
208
+ 5. Conveying Modified Source Versions.
209
+
210
+ You may convey a work based on the Program, or the modifications to
211
+ produce it from the Program, in the form of source code under the
212
+ terms of section 4, provided that you also meet all of these conditions:
213
+
214
+ a) The work must carry prominent notices stating that you modified
215
+ it, and giving a relevant date.
216
+
217
+ b) The work must carry prominent notices stating that it is
218
+ released under this License and any conditions added under section
219
+ 7. This requirement modifies the requirement in section 4 to
220
+ "keep intact all notices".
221
+
222
+ c) You must license the entire work, as a whole, under this
223
+ License to anyone who comes into possession of a copy. This
224
+ License will therefore apply, along with any applicable section 7
225
+ additional terms, to the whole of the work, and all its parts,
226
+ regardless of how they are packaged. This License gives no
227
+ permission to license the work in any other way, but it does not
228
+ invalidate such permission if you have separately received it.
229
+
230
+ d) If the work has interactive user interfaces, each must display
231
+ Appropriate Legal Notices; however, if the Program has interactive
232
+ interfaces that do not display Appropriate Legal Notices, your
233
+ work need not make them do so.
234
+
235
+ A compilation of a covered work with other separate and independent
236
+ works, which are not by their nature extensions of the covered work,
237
+ and which are not combined with it such as to form a larger program,
238
+ in or on a volume of a storage or distribution medium, is called an
239
+ "aggregate" if the compilation and its resulting copyright are not
240
+ used to limit the access or legal rights of the compilation's users
241
+ beyond what the individual works permit. Inclusion of a covered work
242
+ in an aggregate does not cause this License to apply to the other
243
+ parts of the aggregate.
244
+
245
+ 6. Conveying Non-Source Forms.
246
+
247
+ You may convey a covered work in object code form under the terms
248
+ of sections 4 and 5, provided that you also convey the
249
+ machine-readable Corresponding Source under the terms of this License,
250
+ in one of these ways:
251
+
252
+ a) Convey the object code in, or embodied in, a physical product
253
+ (including a physical distribution medium), accompanied by the
254
+ Corresponding Source fixed on a durable physical medium
255
+ customarily used for software interchange.
256
+
257
+ b) Convey the object code in, or embodied in, a physical product
258
+ (including a physical distribution medium), accompanied by a
259
+ written offer, valid for at least three years and valid for as
260
+ long as you offer spare parts or customer support for that product
261
+ model, to give anyone who possesses the object code either (1) a
262
+ copy of the Corresponding Source for all the software in the
263
+ product that is covered by this License, on a durable physical
264
+ medium customarily used for software interchange, for a price no
265
+ more than your reasonable cost of physically performing this
266
+ conveying of source, or (2) access to copy the
267
+ Corresponding Source from a network server at no charge.
268
+
269
+ c) Convey individual copies of the object code with a copy of the
270
+ written offer to provide the Corresponding Source. This
271
+ alternative is allowed only occasionally and noncommercially, and
272
+ only if you received the object code with such an offer, in accord
273
+ with subsection 6b.
274
+
275
+ d) Convey the object code by offering access from a designated
276
+ place (gratis or for a charge), and offer equivalent access to the
277
+ Corresponding Source in the same way through the same place at no
278
+ further charge. You need not require recipients to copy the
279
+ Corresponding Source along with the object code. If the place to
280
+ copy the object code is a network server, the Corresponding Source
281
+ may be on a different server (operated by you or a third party)
282
+ that supports equivalent copying facilities, provided you maintain
283
+ clear directions next to the object code saying where to find the
284
+ Corresponding Source. Regardless of what server hosts the
285
+ Corresponding Source, you remain obligated to ensure that it is
286
+ available for as long as needed to satisfy these requirements.
287
+
288
+ e) Convey the object code using peer-to-peer transmission, provided
289
+ you inform other peers where the object code and Corresponding
290
+ Source of the work are being offered to the general public at no
291
+ charge under subsection 6d.
292
+
293
+ A separable portion of the object code, whose source code is excluded
294
+ from the Corresponding Source as a System Library, need not be
295
+ included in conveying the object code work.
296
+
297
+ A "User Product" is either (1) a "consumer product", which means any
298
+ tangible personal property which is normally used for personal, family,
299
+ or household purposes, or (2) anything designed or sold for incorporation
300
+ into a dwelling. In determining whether a product is a consumer product,
301
+ doubtful cases shall be resolved in favor of coverage. For a particular
302
+ product received by a particular user, "normally used" refers to a
303
+ typical or common use of that class of product, regardless of the status
304
+ of the particular user or of the way in which the particular user
305
+ actually uses, or expects or is expected to use, the product. A product
306
+ is a consumer product regardless of whether the product has substantial
307
+ commercial, industrial or non-consumer uses, unless such uses represent
308
+ the only significant mode of use of the product.
309
+
310
+ "Installation Information" for a User Product means any methods,
311
+ procedures, authorization keys, or other information required to install
312
+ and execute modified versions of a covered work in that User Product from
313
+ a modified version of its Corresponding Source. The information must
314
+ suffice to ensure that the continued functioning of the modified object
315
+ code is in no case prevented or interfered with solely because
316
+ modification has been made.
317
+
318
+ If you convey an object code work under this section in, or with, or
319
+ specifically for use in, a User Product, and the conveying occurs as
320
+ part of a transaction in which the right of possession and use of the
321
+ User Product is transferred to the recipient in perpetuity or for a
322
+ fixed term (regardless of how the transaction is characterized), the
323
+ Corresponding Source conveyed under this section must be accompanied
324
+ by the Installation Information. But this requirement does not apply
325
+ if neither you nor any third party retains the ability to install
326
+ modified object code on the User Product (for example, the work has
327
+ been installed in ROM).
328
+
329
+ The requirement to provide Installation Information does not include a
330
+ requirement to continue to provide support service, warranty, or updates
331
+ for a work that has been modified or installed by the recipient, or for
332
+ the User Product in which it has been modified or installed. Access to a
333
+ network may be denied when the modification itself materially and
334
+ adversely affects the operation of the network or violates the rules and
335
+ protocols for communication across the network.
336
+
337
+ Corresponding Source conveyed, and Installation Information provided,
338
+ in accord with this section must be in a format that is publicly
339
+ documented (and with an implementation available to the public in
340
+ source code form), and must require no special password or key for
341
+ unpacking, reading or copying.
342
+
343
+ 7. Additional Terms.
344
+
345
+ "Additional permissions" are terms that supplement the terms of this
346
+ License by making exceptions from one or more of its conditions.
347
+ Additional permissions that are applicable to the entire Program shall
348
+ be treated as though they were included in this License, to the extent
349
+ that they are valid under applicable law. If additional permissions
350
+ apply only to part of the Program, that part may be used separately
351
+ under those permissions, but the entire Program remains governed by
352
+ this License without regard to the additional permissions.
353
+
354
+ When you convey a copy of a covered work, you may at your option
355
+ remove any additional permissions from that copy, or from any part of
356
+ it. (Additional permissions may be written to require their own
357
+ removal in certain cases when you modify the work.) You may place
358
+ additional permissions on material, added by you to a covered work,
359
+ for which you have or can give appropriate copyright permission.
360
+
361
+ Notwithstanding any other provision of this License, for material you
362
+ add to a covered work, you may (if authorized by the copyright holders of
363
+ that material) supplement the terms of this License with terms:
364
+
365
+ a) Disclaiming warranty or limiting liability differently from the
366
+ terms of sections 15 and 16 of this License; or
367
+
368
+ b) Requiring preservation of specified reasonable legal notices or
369
+ author attributions in that material or in the Appropriate Legal
370
+ Notices displayed by works containing it; or
371
+
372
+ c) Prohibiting misrepresentation of the origin of that material, or
373
+ requiring that modified versions of such material be marked in
374
+ reasonable ways as different from the original version; or
375
+
376
+ d) Limiting the use for publicity purposes of names of licensors or
377
+ authors of the material; or
378
+
379
+ e) Declining to grant rights under trademark law for use of some
380
+ trade names, trademarks, or service marks; or
381
+
382
+ f) Requiring indemnification of licensors and authors of that
383
+ material by anyone who conveys the material (or modified versions of
384
+ it) with contractual assumptions of liability to the recipient, for
385
+ any liability that these contractual assumptions directly impose on
386
+ those licensors and authors.
387
+
388
+ All other non-permissive additional terms are considered "further
389
+ restrictions" within the meaning of section 10. If the Program as you
390
+ received it, or any part of it, contains a notice stating that it is
391
+ governed by this License along with a term that is a further
392
+ restriction, you may remove that term. If a license document contains
393
+ a further restriction but permits relicensing or conveying under this
394
+ License, you may add to a covered work material governed by the terms
395
+ of that license document, provided that the further restriction does
396
+ not survive such relicensing or conveying.
397
+
398
+ If you add terms to a covered work in accord with this section, you
399
+ must place, in the relevant source files, a statement of the
400
+ additional terms that apply to those files, or a notice indicating
401
+ where to find the applicable terms.
402
+
403
+ Additional terms, permissive or non-permissive, may be stated in the
404
+ form of a separately written license, or stated as exceptions;
405
+ the above requirements apply either way.
406
+
407
+ 8. Termination.
408
+
409
+ You may not propagate or modify a covered work except as expressly
410
+ provided under this License. Any attempt otherwise to propagate or
411
+ modify it is void, and will automatically terminate your rights under
412
+ this License (including any patent licenses granted under the third
413
+ paragraph of section 11).
414
+
415
+ However, if you cease all violation of this License, then your
416
+ license from a particular copyright holder is reinstated (a)
417
+ provisionally, unless and until the copyright holder explicitly and
418
+ finally terminates your license, and (b) permanently, if the copyright
419
+ holder fails to notify you of the violation by some reasonable means
420
+ prior to 60 days after the cessation.
421
+
422
+ Moreover, your license from a particular copyright holder is
423
+ reinstated permanently if the copyright holder notifies you of the
424
+ violation by some reasonable means, this is the first time you have
425
+ received notice of violation of this License (for any work) from that
426
+ copyright holder, and you cure the violation prior to 30 days after
427
+ your receipt of the notice.
428
+
429
+ Termination of your rights under this section does not terminate the
430
+ licenses of parties who have received copies or rights from you under
431
+ this License. If your rights have been terminated and not permanently
432
+ reinstated, you do not qualify to receive new licenses for the same
433
+ material under section 10.
434
+
435
+ 9. Acceptance Not Required for Having Copies.
436
+
437
+ You are not required to accept this License in order to receive or
438
+ run a copy of the Program. Ancillary propagation of a covered work
439
+ occurring solely as a consequence of using peer-to-peer transmission
440
+ to receive a copy likewise does not require acceptance. However,
441
+ nothing other than this License grants you permission to propagate or
442
+ modify any covered work. These actions infringe copyright if you do
443
+ not accept this License. Therefore, by modifying or propagating a
444
+ covered work, you indicate your acceptance of this License to do so.
445
+
446
+ 10. Automatic Licensing of Downstream Recipients.
447
+
448
+ Each time you convey a covered work, the recipient automatically
449
+ receives a license from the original licensors, to run, modify and
450
+ propagate that work, subject to this License. You are not responsible
451
+ for enforcing compliance by third parties with this License.
452
+
453
+ An "entity transaction" is a transaction transferring control of an
454
+ organization, or substantially all assets of one, or subdividing an
455
+ organization, or merging organizations. If propagation of a covered
456
+ work results from an entity transaction, each party to that
457
+ transaction who receives a copy of the work also receives whatever
458
+ licenses to the work the party's predecessor in interest had or could
459
+ give under the previous paragraph, plus a right to possession of the
460
+ Corresponding Source of the work from the predecessor in interest, if
461
+ the predecessor has it or can get it with reasonable efforts.
462
+
463
+ You may not impose any further restrictions on the exercise of the
464
+ rights granted or affirmed under this License. For example, you may
465
+ not impose a license fee, royalty, or other charge for exercise of
466
+ rights granted under this License, and you may not initiate litigation
467
+ (including a cross-claim or counterclaim in a lawsuit) alleging that
468
+ any patent claim is infringed by making, using, selling, offering for
469
+ sale, or importing the Program or any portion of it.
470
+
471
+ 11. Patents.
472
+
473
+ A "contributor" is a copyright holder who authorizes use under this
474
+ License of the Program or a work on which the Program is based. The
475
+ work thus licensed is called the contributor's "contributor version".
476
+
477
+ A contributor's "essential patent claims" are all patent claims
478
+ owned or controlled by the contributor, whether already acquired or
479
+ hereafter acquired, that would be infringed by some manner, permitted
480
+ by this License, of making, using, or selling its contributor version,
481
+ but do not include claims that would be infringed only as a
482
+ consequence of further modification of the contributor version. For
483
+ purposes of this definition, "control" includes the right to grant
484
+ patent sublicenses in a manner consistent with the requirements of
485
+ this License.
486
+
487
+ Each contributor grants you a non-exclusive, worldwide, royalty-free
488
+ patent license under the contributor's essential patent claims, to
489
+ make, use, sell, offer for sale, import and otherwise run, modify and
490
+ propagate the contents of its contributor version.
491
+
492
+ In the following three paragraphs, a "patent license" is any express
493
+ agreement or commitment, however denominated, not to enforce a patent
494
+ (such as an express permission to practice a patent or covenant not to
495
+ sue for patent infringement). To "grant" such a patent license to a
496
+ party means to make such an agreement or commitment not to enforce a
497
+ patent against the party.
498
+
499
+ If you convey a covered work, knowingly relying on a patent license,
500
+ and the Corresponding Source of the work is not available for anyone
501
+ to copy, free of charge and under the terms of this License, through a
502
+ publicly available network server or other readily accessible means,
503
+ then you must either (1) cause the Corresponding Source to be so
504
+ available, or (2) arrange to deprive yourself of the benefit of the
505
+ patent license for this particular work, or (3) arrange, in a manner
506
+ consistent with the requirements of this License, to extend the patent
507
+ license to downstream recipients. "Knowingly relying" means you have
508
+ actual knowledge that, but for the patent license, your conveying the
509
+ covered work in a country, or your recipient's use of the covered work
510
+ in a country, would infringe one or more identifiable patents in that
511
+ country that you have reason to believe are valid.
512
+
513
+ If, pursuant to or in connection with a single transaction or
514
+ arrangement, you convey, or propagate by procuring conveyance of, a
515
+ covered work, and grant a patent license to some of the parties
516
+ receiving the covered work authorizing them to use, propagate, modify
517
+ or convey a specific copy of the covered work, then the patent license
518
+ you grant is automatically extended to all recipients of the covered
519
+ work and works based on it.
520
+
521
+ A patent license is "discriminatory" if it does not include within
522
+ the scope of its coverage, prohibits the exercise of, or is
523
+ conditioned on the non-exercise of one or more of the rights that are
524
+ specifically granted under this License. You may not convey a covered
525
+ work if you are a party to an arrangement with a third party that is
526
+ in the business of distributing software, under which you make payment
527
+ to the third party based on the extent of your activity of conveying
528
+ the work, and under which the third party grants, to any of the
529
+ parties who would receive the covered work from you, a discriminatory
530
+ patent license (a) in connection with copies of the covered work
531
+ conveyed by you (or copies made from those copies), or (b) primarily
532
+ for and in connection with specific products or compilations that
533
+ contain the covered work, unless you entered into that arrangement,
534
+ or that patent license was granted, prior to 28 March 2007.
535
+
536
+ Nothing in this License shall be construed as excluding or limiting
537
+ any implied license or other defenses to infringement that may
538
+ otherwise be available to you under applicable patent law.
539
+
540
+ 12. No Surrender of Others' Freedom.
541
+
542
+ If conditions are imposed on you (whether by court order, agreement or
543
+ otherwise) that contradict the conditions of this License, they do not
544
+ excuse you from the conditions of this License. If you cannot convey a
545
+ covered work so as to satisfy simultaneously your obligations under this
546
+ License and any other pertinent obligations, then as a consequence you may
547
+ not convey it at all. For example, if you agree to terms that obligate you
548
+ to collect a royalty for further conveying from those to whom you convey
549
+ the Program, the only way you could satisfy both those terms and this
550
+ License would be to refrain entirely from conveying the Program.
551
+
552
+ 13. Use with the GNU Affero General Public License.
553
+
554
+ Notwithstanding any other provision of this License, you have
555
+ permission to link or combine any covered work with a work licensed
556
+ under version 3 of the GNU Affero General Public License into a single
557
+ combined work, and to convey the resulting work. The terms of this
558
+ License will continue to apply to the part which is the covered work,
559
+ but the special requirements of the GNU Affero General Public License,
560
+ section 13, concerning interaction through a network will apply to the
561
+ combination as such.
562
+
563
+ 14. Revised Versions of this License.
564
+
565
+ The Free Software Foundation may publish revised and/or new versions of
566
+ the GNU General Public License from time to time. Such new versions will
567
+ be similar in spirit to the present version, but may differ in detail to
568
+ address new problems or concerns.
569
+
570
+ Each version is given a distinguishing version number. If the
571
+ Program specifies that a certain numbered version of the GNU General
572
+ Public License "or any later version" applies to it, you have the
573
+ option of following the terms and conditions either of that numbered
574
+ version or of any later version published by the Free Software
575
+ Foundation. If the Program does not specify a version number of the
576
+ GNU General Public License, you may choose any version ever published
577
+ by the Free Software Foundation.
578
+
579
+ If the Program specifies that a proxy can decide which future
580
+ versions of the GNU General Public License can be used, that proxy's
581
+ public statement of acceptance of a version permanently authorizes you
582
+ to choose that version for the Program.
583
+
584
+ Later license versions may give you additional or different
585
+ permissions. However, no additional obligations are imposed on any
586
+ author or copyright holder as a result of your choosing to follow a
587
+ later version.
588
+
589
+ 15. Disclaimer of Warranty.
590
+
591
+ THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY
592
+ APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT
593
+ HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY
594
+ OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO,
595
+ THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
596
+ PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM
597
+ IS WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF
598
+ ALL NECESSARY SERVICING, REPAIR OR CORRECTION.
599
+
600
+ 16. Limitation of Liability.
601
+
602
+ IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING
603
+ WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MODIFIES AND/OR CONVEYS
604
+ THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY
605
+ GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE
606
+ USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF
607
+ DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD
608
+ PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS),
609
+ EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF
610
+ SUCH DAMAGES.
611
+
612
+ 17. Interpretation of Sections 15 and 16.
613
+
614
+ If the disclaimer of warranty and limitation of liability provided
615
+ above cannot be given local legal effect according to their terms,
616
+ reviewing courts shall apply local law that most closely approximates
617
+ an absolute waiver of all civil liability in connection with the
618
+ Program, unless a warranty or assumption of liability accompanies a
619
+ copy of the Program in return for a fee.
620
+
621
+ END OF TERMS AND CONDITIONS
622
+
623
+ How to Apply These Terms to Your New Programs
624
+
625
+ If you develop a new program, and you want it to be of the greatest
626
+ possible use to the public, the best way to achieve this is to make it
627
+ free software which everyone can redistribute and change under these terms.
628
+
629
+ To do so, attach the following notices to the program. It is safest
630
+ to attach them to the start of each source file to most effectively
631
+ state the exclusion of warranty; and each file should have at least
632
+ the "copyright" line and a pointer to where the full notice is found.
633
+
634
+ <one line to give the program's name and a brief idea of what it does.>
635
+ Copyright (C) <year> <name of author>
636
+
637
+ This program is free software: you can redistribute it and/or modify
638
+ it under the terms of the GNU General Public License as published by
639
+ the Free Software Foundation, either version 3 of the License, or
640
+ (at your option) any later version.
641
+
642
+ This program is distributed in the hope that it will be useful,
643
+ but WITHOUT ANY WARRANTY; without even the implied warranty of
644
+ MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
645
+ GNU General Public License for more details.
646
+
647
+ You should have received a copy of the GNU General Public License
648
+ along with this program. If not, see <https://www.gnu.org/licenses/>.
649
+
650
+ Also add information on how to contact you by electronic and paper mail.
651
+
652
+ If the program does terminal interaction, make it output a short
653
+ notice like this when it starts in an interactive mode:
654
+
655
+ <program> Copyright (C) <year> <name of author>
656
+ This program comes with ABSOLUTELY NO WARRANTY; for details type `show w'.
657
+ This is free software, and you are welcome to redistribute it
658
+ under certain conditions; type `show c' for details.
659
+
660
+ The hypothetical commands `show w' and `show c' should show the appropriate
661
+ parts of the General Public License. Of course, your program's commands
662
+ might be different; for a GUI interface, you would use an "about box".
663
+
664
+ You should also get your employer (if you work as a programmer) or school,
665
+ if any, to sign a "copyright disclaimer" for the program, if necessary.
666
+ For more information on this, and how to apply and follow the GNU GPL, see
667
+ <https://www.gnu.org/licenses/>.
668
+
669
+ The GNU General Public License does not permit incorporating your program
670
+ into proprietary programs. If your program is a subroutine library, you
671
+ may consider it more useful to permit linking proprietary applications with
672
+ the library. If this is what you want to do, use the GNU Lesser General
673
+ Public License instead of this License. But first, please read
674
+ <https://www.gnu.org/licenses/why-not-lgpl.html>.
README.md CHANGED
@@ -1,12 +1,263 @@
1
- ---
2
- title: LawGPT
3
- emoji: 🐨
4
- colorFrom: purple
5
- colorTo: red
6
- sdk: gradio
7
- sdk_version: 4.39.0
8
- app_file: app.py
9
- pinned: false
10
- ---
11
-
12
- Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ title: LawGPT
3
+ app_file: webui.py
4
+ sdk: gradio
5
+ sdk_version: 4.37.2
6
+ ---
7
+ # LaWGPT:基于中文法律知识的大语言模型
8
+
9
+ <p align="center">
10
+ <a href="assets/logo/lawgpt.jpeg">
11
+ <img src="./assets/logo/lawgpt.jpeg" width="80%" >
12
+ </a>
13
+ </p>
14
+
15
+ <p align="center">
16
+ <a href="https://github.com/pengxiao-song/LaWGPT/wiki"><img src="https://img.shields.io/badge/docs-Wiki-brightgreen"></a>
17
+ <a href="https://huggingface.co/entity303"><img src="https://img.shields.io/badge/Hugging%20Face-entity303-green"></a>
18
+ <a href=""><img src="https://img.shields.io/badge/version-beta1.1-blue"></a>
19
+ <a href=""><img src="https://img.shields.io/badge/os-Linux-9cf"></a>
20
+ <a href=""><img src="https://img.shields.io/github/last-commit/pengxiao-song/lawgpt"></a>
21
+ <a href="https://star-history.com/#pengxiao-song/LaWGPT&Timeline"><img src="https://img.shields.io/github/stars/pengxiao-song/lawgpt?color=yellow"></a>
22
+ <!-- <a href="https://www.lamda.nju.edu.cn/"><img src="https://img.shields.io/badge/support-NJU--LAMDA-9cf.svg"></a> -->
23
+ </p>
24
+
25
+ LaWGPT 是一系列基于中文法律知识的开源大语言模型。
26
+
27
+ 该系列模型在通用中文基座模型(如 Chinese-LLaMA、ChatGLM 等)的基础上扩充法律领域专有词表、**大规模中文法律语料预训练**,增强了大模型在法律领域的基础语义理解能力。在此基础上,**构造法律领域对话问答数据集、中国司法考试数据集进行指令精调**,提升了模型对法律内容的理解和执行能力。
28
+
29
+ 详细内容请参考[技术报告](https://arxiv.org/pdf/2406.04614)。
30
+
31
+ ---
32
+
33
+ 本项目持续开展,法律领域数据集及系列模型后续相继开源,敬请关注。
34
+
35
+ ## 更新
36
+
37
+ - 🌟 2023/05/30:公开发布
38
+ <a href="https://huggingface.co/entity303/lawgpt-lora-7b-v2"><img src="https://img.shields.io/badge/Model-LaWGPT--7B--beta1.1-yellow"></a>
39
+
40
+ - **LaWGPT-7B-beta1.1**:法律对话模型,构造 35w 高质量法律问答数据集基于 Chinese-alpaca-plus-7B 指令精调
41
+
42
+ - 📣 2023/05/26:开放 [Discussions 讨论区](https://github.com/pengxiao-song/LaWGPT/discussions),欢迎朋友们交流探讨、提出意见、分享观点!
43
+
44
+ - 🛠️ 2023/05/22:项目主分支结构调整,详见[项目结构](https://github.com/pengxiao-song/LaWGPT#项目结构);支持[命令行批量推理](https://github.com/pengxiao-song/LaWGPT/blob/main/scripts/infer.sh)
45
+
46
+ - 🪴 2023/05/15:发布 [中文法律数据源汇总(Awesome Chinese Legal Resources)](https://github.com/pengxiao-song/awesome-chinese-legal-resources) 和 [法律领域词表](https://github.com/pengxiao-song/LaWGPT/blob/main/resources/legal_vocab.txt)
47
+
48
+ - 🌟 2023/05/13:公开发布
49
+ <a href="https://huggingface.co/entity303/legal-lora-7b"><img src="https://img.shields.io/badge/Model-Legal--Base--7B-blue"></a>
50
+ <a href="https://huggingface.co/entity303/lawgpt-legal-lora-7b"><img src="https://img.shields.io/badge/Model-LaWGPT--7B--beta1.0-yellow"></a>
51
+
52
+ - **Legal-Base-7B**:法律基座模型,使用 50w 中文裁判文书数据二次预训练
53
+
54
+ - **LaWGPT-7B-beta1.0**:法律对话模型,构造 30w 高质量法律问答数据集基于 Legal-Base-7B 指令精调
55
+
56
+ - 🌟 2023/04/12:内部测试
57
+ <a href="https://huggingface.co/entity303/lawgpt-lora-7b"><img src="https://img.shields.io/badge/Model-Lawgpt--7B--alpha-yellow"></a>
58
+ - **LaWGPT-7B-alpha**:在 Chinese-LLaMA-7B 的基础上直接构造 30w 法律问答数据集指令精调
59
+
60
+ ## 快速开始
61
+
62
+ 1. 准备代码,创建环境
63
+
64
+ ```bash
65
+ # 下载代码
66
+ git clone [email protected]:pengxiao-song/LaWGPT.git
67
+ cd LaWGPT
68
+
69
+ # 创建环境
70
+ conda create -n lawgpt python=3.10 -y
71
+ conda activate lawgpt
72
+ pip install -r requirements.txt
73
+ ```
74
+ 2. **启动 web ui(可选,易于调节参数)**
75
+
76
+ - 首先,执行服务启动脚本:`bash scripts/webui.sh`
77
+
78
+ - 其次,访问 http://127.0.0.1:7860 :
79
+
80
+ <p align="center">
81
+ <img style="border-radius: 50%; box-shadow: 0 0 10px rgba(0,0,0,0.5); width: 80%;", src="./assets/demo/example-03.jpeg">
82
+ </p>
83
+
84
+ 3. **命令行推理(可选,支持批量测试)**
85
+
86
+ - 首先,参考 `resources/example_infer_data.json` 文件内容构造测试样本集;
87
+
88
+ - 其次,执行推理脚本:`bash scripts/infer.sh`。其中 `--infer_data_path` 参数为测试样本集路径,如果为空或者路径出错,则以交互模式运行。
89
+
90
+ 注意,以上步骤的默认模型为 LaWGPT-7B-alpha ,如果您想使用 LaWGPT-7B-beta1.0 模型:
91
+
92
+ - 由于 [LLaMA](https://github.com/facebookresearch/llama) 和 [Chinese-LLaMA](https://github.com/ymcui/Chinese-LLaMA-Alpaca) ��未开源模型权重。根据相应开源许可,**本项目只能发布 LoRA 权重**,无法发布完整的模型权重,请各位谅解。
93
+
94
+ - 本项目给出[合并方式](https://github.com/pengxiao-song/LaWGPT/wiki/%E6%A8%A1%E5%9E%8B%E5%90%88%E5%B9%B6),请各位获取原版权重后自行重构模型。
95
+
96
+
97
+ ## 项目结构
98
+
99
+ ```bash
100
+ LaWGPT
101
+ ├── assets # 静态资源
102
+ ├── resources # 项目资源
103
+ ├── models # 基座模型及 lora 权重
104
+ │ ├── base_models
105
+ │ └── lora_weights
106
+ ├── outputs # 指令微调的输出权重
107
+ ├── data # 实验数据
108
+ ├── scripts # 脚本目录
109
+ │ ├── finetune.sh # 指令微调脚本
110
+ │ └── webui.sh # 启动服务脚本
111
+ ├── templates # prompt 模板
112
+ ├── tools # 工具包
113
+ ├── utils
114
+ ├── train_clm.py # 二次训练
115
+ ├── finetune.py # 指令微调
116
+ ├── webui.py # 启动服务
117
+ ├── README.md
118
+ └── requirements.txt
119
+ ```
120
+
121
+
122
+ ## 数据构建
123
+
124
+ 本项目基于中文裁判文书网公开法律文书数据、司法考试数据等数据集展开,详情参考[中文法律数据源汇总(Awesome Chinese Legal Resources)](https://github.com/pengxiao-song/awesome-chinese-legal-resources)。
125
+
126
+ 1. 初级数据生成:根据 [Stanford_alpaca](https://github.com/tatsu-lab/stanford_alpaca#data-generation-process) 和 [self-instruct](https://github.com/yizhongw/self-instruct) 方式生成对话问答数据
127
+ 2. 知识引导的数据生成:通过 Knowledge-based Self-Instruct 方式基于中文法律结构化知识生成数据。
128
+ 3. 引入 ChatGPT 清洗数据,辅助构造高质量数据集。
129
+
130
+ ## 模型训练
131
+
132
+ LawGPT 系列模型的训练过程分为两个阶段:
133
+
134
+ 1. 第一阶段:扩充法律领域词表,在大规模法律文书及法典数据上预训练 Chinese-LLaMA
135
+ 2. 第二阶段:构造法律领域对话问答数据集,在预训练模型基础上指令精调
136
+
137
+ ### 二次训练流程
138
+
139
+ 1. 参考 `resources/example_instruction_train.json` 构造二次训练数据集
140
+ 2. 运行 `scripts/train_clm.sh`
141
+
142
+ ### 指令精调步骤
143
+
144
+ 1. 参考 `resources/example_instruction_tune.json` 构造指令微调数据集
145
+ 2. 运行 `scripts/finetune.sh`
146
+
147
+ ### 计算资源
148
+
149
+ 8 张 Tesla V100-SXM2-32GB :二次训练阶段耗时约 24h / epoch,微调阶段耗时约 12h / epoch
150
+
151
+ ## 模型评估
152
+
153
+ ### 输出示例
154
+
155
+ <details><summary>问题:酒驾撞人怎么判刑?</summary>
156
+
157
+ ![](assets/demo/demo07.jpeg)
158
+
159
+ </details>
160
+
161
+ <details><summary>问题:请给出判决意见。</summary>
162
+
163
+ ![](assets/demo/example-05.jpeg)
164
+
165
+ </details>
166
+
167
+ <details><summary>问题:请介绍赌博罪的定义。</summary>
168
+
169
+ ![](assets/demo/example-06.jpeg)
170
+
171
+ </details>
172
+
173
+ <details><summary>问题:请问加班工资怎么算?</summary>
174
+
175
+ ![](assets/demo/example-04.jpeg)
176
+
177
+ </details>
178
+
179
+ <details><summary>问题:民间借贷受国家保护的合法利息是多少?</summary>
180
+
181
+ ![](assets/demo/example-02.jpeg)
182
+
183
+ </details>
184
+
185
+ <details><summary>问题:欠了信用卡的钱还不上要坐牢吗?</summary>
186
+
187
+ ![](assets/demo/example-01.jpeg)
188
+
189
+ </details>
190
+
191
+ <details><summary>问题:你能否写一段抢劫罪罪名的案情描述?</summary>
192
+
193
+ ![](assets/demo/example-03.jpeg)
194
+
195
+ </details>
196
+
197
+
198
+ ### 局限性
199
+
200
+ 由于计算资源、数据规模等因素限制,当前阶段 LawGPT 存在诸多局限性:
201
+
202
+ 1. 数据资源有限、模型容量较小,导致其相对较弱的模型记忆和语言能力。因此,在面对事实性知识任务时,可能会生成不正确的结果。
203
+ 2. 该系列模型只进行了初步的人类意图对齐。因此,可能产生不可预测的有害内容以及不符合人类偏好和价值观的内容。
204
+ 3. 自我认知能力存在问题,中文理解能力有待增强。
205
+
206
+ 请诸君在使用前了解上述问题,以免造成误解和不必要的麻烦。
207
+
208
+
209
+ ## 协作者
210
+
211
+ 如下各位合作开展(按字母序排列):[@cainiao](https://github.com/herobrine19)、[@njuyxw](https://github.com/njuyxw)、[@pengxiao-song](https://github.com/pengxiao-song)、[@WNJXYK](https://github.com/WNJXYK)
212
+
213
+ 指导老师:李宇峰、郭兰哲、涂威威(<img src="https://github.com/pengxiao-song/LaWGPT/assets/47233927/3ae2cfac-f2b0-4383-8a7e-0252d8558aed" width="10%" >),由南京大学机器学习与数据挖掘研究组(
214
+ <img src="assets/logo/lamda.png" width="8%"> &nbsp;
215
+ )支持
216
+
217
+
218
+ ## 免责声明
219
+
220
+ 请各位严格遵守如下约定:
221
+
222
+ 1. 本项目任何资源**仅供学术研究使用,严禁任何商业用途**。
223
+ 2. 模型输出受多种不确定性因素影响,本项目当前无法保证其准确性,**严禁用于真实法律场景**。
224
+ 3. 本项目不承担任何法律责任,亦不对因使用相关资源和输出结果而可能产生的任何损失承担责任。
225
+
226
+
227
+ ## 问题反馈
228
+
229
+ 如有问题,请在 GitHub Issue 中提交。
230
+
231
+ - 提交问题之前,建议查阅 FAQ 及以往的 issue 看是否能解决您的问题。
232
+ - 请礼貌讨论,构建和谐社区。
233
+
234
+ 协作者科研之余推进项目进展,由于人力有限难以实时反馈,给诸君带来不便,敬请谅解!
235
+
236
+
237
+ ## 致谢
238
+
239
+ 本项目基于如下开源项目展开,在此对相关项目和开发人员表示诚挚的感谢:
240
+
241
+ - Chinese-LLaMA-Alpaca: https://github.com/ymcui/Chinese-LLaMA-Alpaca
242
+ - LLaMA: https://github.com/facebookresearch/llama
243
+ - Alpaca: https://github.com/tatsu-lab/stanford_alpaca
244
+ - alpaca-lora: https://github.com/tloen/alpaca-lora
245
+ - ChatGLM-6B: https://github.com/THUDM/ChatGLM-6B
246
+
247
+ 此外,本项目基于开放数据资源,详见 [Awesome Chinese Legal Resources](https://github.com/pengxiao-song/awesome-chinese-legal-resources),一并表示感谢。
248
+
249
+
250
+ ## 引用
251
+
252
+ 如果您觉得我们的工作对您有所帮助,请考虑引用该项目。
253
+
254
+ ```plain
255
+ @misc{lawgpt,
256
+ title={LawGPT: A Chinese Legal Knowledge-Enhanced Large Language Model},
257
+ author={Zhi Zhou and Jiang-Xin Shi and Peng-Xiao Song and Xiao-Wen Yang and Yi-Xuan Jin and Lan-Zhe Guo and Yu-Feng Li},
258
+ year={2024},
259
+ eprint={2406.04614},
260
+ archivePrefix={arXiv},
261
+ primaryClass={cs.CL}
262
+ }
263
+ ```
assets/demo/demo.png ADDED
assets/demo/demo07.jpeg ADDED
assets/demo/example-01.jpeg ADDED
assets/demo/example-02.jpeg ADDED
assets/demo/example-03.jpeg ADDED
assets/demo/example-04.jpeg ADDED
assets/demo/example-05.jpeg ADDED
assets/demo/example-06.jpeg ADDED
assets/logo/lamda.png ADDED
assets/logo/lawgpt.jpeg ADDED
data/.gitkeep ADDED
File without changes
finetune.py ADDED
@@ -0,0 +1,283 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import sys
3
+ from typing import List
4
+
5
+ import fire
6
+ import torch
7
+ import transformers
8
+ from datasets import load_dataset
9
+
10
+ """
11
+ Unused imports:
12
+ import torch.nn as nn
13
+ import bitsandbytes as bnb
14
+ """
15
+
16
+ from peft import (
17
+ LoraConfig,
18
+ get_peft_model,
19
+ get_peft_model_state_dict,
20
+ prepare_model_for_int8_training,
21
+ set_peft_model_state_dict,
22
+ )
23
+ from transformers import LlamaForCausalLM, LlamaTokenizer
24
+
25
+ from utils.prompter import Prompter
26
+
27
+
28
+ def train(
29
+ # model/data params
30
+ base_model: str = "", # the only required argument
31
+ data_path: str = "yahma/alpaca-cleaned",
32
+ output_dir: str = "./lora-alpaca",
33
+ # training hyperparams
34
+ batch_size: int = 128,
35
+ micro_batch_size: int = 4,
36
+ num_epochs: int = 3,
37
+ learning_rate: float = 3e-4,
38
+ cutoff_len: int = 256,
39
+ val_set_size: int = 2000,
40
+ # lora hyperparams
41
+ lora_r: int = 8,
42
+ lora_alpha: int = 16,
43
+ lora_dropout: float = 0.05,
44
+ lora_target_modules: List[str] = [
45
+ "q_proj",
46
+ "v_proj",
47
+ ],
48
+ # llm hyperparams
49
+ train_on_inputs: bool = True, # if False, masks out inputs in loss
50
+ add_eos_token: bool = True,
51
+ group_by_length: bool = False, # faster, but produces an odd training loss curve
52
+ # wandb params
53
+ wandb_project: str = "",
54
+ wandb_run_name: str = "",
55
+ wandb_watch: str = "", # options: false | gradients | all
56
+ wandb_log_model: str = "", # options: false | true
57
+ resume_from_checkpoint: str = None, # either training checkpoint or final adapter
58
+ prompt_template_name: str = "alpaca", # The prompt template to use, will default to alpaca.
59
+ ):
60
+ if int(os.environ.get("LOCAL_RANK", 0)) == 0:
61
+ print(
62
+ f"Training Alpaca-LoRA model with params:\n"
63
+ f"base_model: {base_model}\n"
64
+ f"data_path: {data_path}\n"
65
+ f"output_dir: {output_dir}\n"
66
+ f"batch_size: {batch_size}\n"
67
+ f"micro_batch_size: {micro_batch_size}\n"
68
+ f"num_epochs: {num_epochs}\n"
69
+ f"learning_rate: {learning_rate}\n"
70
+ f"cutoff_len: {cutoff_len}\n"
71
+ f"val_set_size: {val_set_size}\n"
72
+ f"lora_r: {lora_r}\n"
73
+ f"lora_alpha: {lora_alpha}\n"
74
+ f"lora_dropout: {lora_dropout}\n"
75
+ f"lora_target_modules: {lora_target_modules}\n"
76
+ f"train_on_inputs: {train_on_inputs}\n"
77
+ f"add_eos_token: {add_eos_token}\n"
78
+ f"group_by_length: {group_by_length}\n"
79
+ f"wandb_project: {wandb_project}\n"
80
+ f"wandb_run_name: {wandb_run_name}\n"
81
+ f"wandb_watch: {wandb_watch}\n"
82
+ f"wandb_log_model: {wandb_log_model}\n"
83
+ f"resume_from_checkpoint: {resume_from_checkpoint or False}\n"
84
+ f"prompt template: {prompt_template_name}\n"
85
+ )
86
+ assert (
87
+ base_model
88
+ ), "Please specify a --base_model, e.g. --base_model='huggyllama/llama-7b'"
89
+ gradient_accumulation_steps = batch_size // micro_batch_size
90
+
91
+ prompter = Prompter(prompt_template_name)
92
+
93
+ device_map = "auto"
94
+ world_size = int(os.environ.get("WORLD_SIZE", 1))
95
+ ddp = world_size != 1
96
+ if ddp:
97
+ device_map = {"": int(os.environ.get("LOCAL_RANK") or 0)}
98
+ gradient_accumulation_steps = gradient_accumulation_steps // world_size
99
+
100
+ # Check if parameter passed or if set within environ
101
+ use_wandb = len(wandb_project) > 0 or (
102
+ "WANDB_PROJECT" in os.environ and len(os.environ["WANDB_PROJECT"]) > 0
103
+ )
104
+ # Only overwrite environ if wandb param passed
105
+ if len(wandb_project) > 0:
106
+ os.environ["WANDB_PROJECT"] = wandb_project
107
+ if len(wandb_watch) > 0:
108
+ os.environ["WANDB_WATCH"] = wandb_watch
109
+ if len(wandb_log_model) > 0:
110
+ os.environ["WANDB_LOG_MODEL"] = wandb_log_model
111
+
112
+ model = LlamaForCausalLM.from_pretrained(
113
+ base_model,
114
+ load_in_8bit=True,
115
+ torch_dtype=torch.float16,
116
+ device_map=device_map,
117
+ )
118
+
119
+ tokenizer = LlamaTokenizer.from_pretrained(base_model)
120
+
121
+ tokenizer.pad_token_id = (
122
+ 0 # unk. we want this to be different from the eos token
123
+ )
124
+ tokenizer.padding_side = "left" # Allow batched inference
125
+
126
+ def tokenize(prompt, add_eos_token=True):
127
+ # there's probably a way to do this with the tokenizer settings
128
+ # but again, gotta move fast
129
+ result = tokenizer(
130
+ prompt,
131
+ truncation=True,
132
+ max_length=cutoff_len,
133
+ padding=False,
134
+ return_tensors=None,
135
+ )
136
+ if (
137
+ result["input_ids"][-1] != tokenizer.eos_token_id
138
+ and len(result["input_ids"]) < cutoff_len
139
+ and add_eos_token
140
+ ):
141
+ result["input_ids"].append(tokenizer.eos_token_id)
142
+ result["attention_mask"].append(1)
143
+
144
+ result["labels"] = result["input_ids"].copy()
145
+
146
+ return result
147
+
148
+ def generate_and_tokenize_prompt(data_point):
149
+ full_prompt = prompter.generate_prompt(
150
+ data_point["instruction"],
151
+ data_point["input"],
152
+ data_point["output"],
153
+ )
154
+ tokenized_full_prompt = tokenize(full_prompt)
155
+ if not train_on_inputs:
156
+ user_prompt = prompter.generate_prompt(
157
+ data_point["instruction"], data_point["input"]
158
+ )
159
+ tokenized_user_prompt = tokenize(
160
+ user_prompt, add_eos_token=add_eos_token
161
+ )
162
+ user_prompt_len = len(tokenized_user_prompt["input_ids"])
163
+
164
+ if add_eos_token:
165
+ user_prompt_len -= 1
166
+
167
+ tokenized_full_prompt["labels"] = [
168
+ -100
169
+ ] * user_prompt_len + tokenized_full_prompt["labels"][
170
+ user_prompt_len:
171
+ ] # could be sped up, probably
172
+ return tokenized_full_prompt
173
+
174
+ model = prepare_model_for_int8_training(model)
175
+
176
+ config = LoraConfig(
177
+ r=lora_r,
178
+ lora_alpha=lora_alpha,
179
+ target_modules=lora_target_modules,
180
+ lora_dropout=lora_dropout,
181
+ bias="none",
182
+ task_type="CAUSAL_LM",
183
+ )
184
+ model = get_peft_model(model, config)
185
+
186
+ if data_path.endswith(".json") or data_path.endswith(".jsonl"):
187
+ data = load_dataset("json", data_files=data_path)
188
+ else:
189
+ data = load_dataset(data_path)
190
+
191
+ if resume_from_checkpoint:
192
+ # Check the available weights and load them
193
+ checkpoint_name = os.path.join(
194
+ resume_from_checkpoint, "pytorch_model.bin"
195
+ ) # Full checkpoint
196
+ if not os.path.exists(checkpoint_name):
197
+ checkpoint_name = os.path.join(
198
+ resume_from_checkpoint, "adapter_model.bin"
199
+ ) # only LoRA model - LoRA config above has to fit
200
+ resume_from_checkpoint = (
201
+ False # So the trainer won't try loading its state
202
+ )
203
+ # The two files above have a different name depending on how they were saved, but are actually the same.
204
+ if os.path.exists(checkpoint_name):
205
+ print(f"Restarting from {checkpoint_name}")
206
+ adapters_weights = torch.load(checkpoint_name)
207
+ set_peft_model_state_dict(model, adapters_weights)
208
+ else:
209
+ print(f"Checkpoint {checkpoint_name} not found")
210
+
211
+ model.print_trainable_parameters() # Be more transparent about the % of trainable params.
212
+
213
+ if val_set_size > 0:
214
+ train_val = data["train"].train_test_split(
215
+ test_size=val_set_size, shuffle=True, seed=42
216
+ )
217
+ train_data = (
218
+ train_val["train"].shuffle().map(generate_and_tokenize_prompt)
219
+ )
220
+ val_data = (
221
+ train_val["test"].shuffle().map(generate_and_tokenize_prompt)
222
+ )
223
+ else:
224
+ train_data = data["train"].shuffle().map(generate_and_tokenize_prompt)
225
+ val_data = None
226
+
227
+ if not ddp and torch.cuda.device_count() > 1:
228
+ # keeps Trainer from trying its own DataParallelism when more than 1 gpu is available
229
+ model.is_parallelizable = True
230
+ model.model_parallel = True
231
+
232
+ trainer = transformers.Trainer(
233
+ model=model,
234
+ train_dataset=train_data,
235
+ eval_dataset=val_data,
236
+ args=transformers.TrainingArguments(
237
+ per_device_train_batch_size=micro_batch_size,
238
+ gradient_accumulation_steps=gradient_accumulation_steps,
239
+ warmup_ratio=0.1,
240
+ num_train_epochs=num_epochs,
241
+ learning_rate=learning_rate,
242
+ fp16=True,
243
+ logging_steps=10,
244
+ optim="adamw_torch",
245
+ evaluation_strategy="steps" if val_set_size > 0 else "no",
246
+ save_strategy="steps",
247
+ eval_steps=50 if val_set_size > 0 else None,
248
+ save_steps=50,
249
+ output_dir=output_dir,
250
+ save_total_limit=5,
251
+ load_best_model_at_end=True if val_set_size > 0 else False,
252
+ ddp_find_unused_parameters=False if ddp else None,
253
+ group_by_length=group_by_length,
254
+ report_to="wandb" if use_wandb else None,
255
+ run_name=wandb_run_name if use_wandb else None,
256
+ ),
257
+ data_collator=transformers.DataCollatorForSeq2Seq(
258
+ tokenizer, pad_to_multiple_of=8, return_tensors="pt", padding=True
259
+ ),
260
+ )
261
+ model.config.use_cache = False
262
+
263
+ old_state_dict = model.state_dict
264
+ model.state_dict = (
265
+ lambda self, *_, **__: get_peft_model_state_dict(
266
+ self, old_state_dict()
267
+ )
268
+ ).__get__(model, type(model))
269
+
270
+ if torch.__version__ >= "2" and sys.platform != "win32":
271
+ model = torch.compile(model)
272
+
273
+ trainer.train(resume_from_checkpoint=resume_from_checkpoint)
274
+
275
+ model.save_pretrained(output_dir)
276
+
277
+ print(
278
+ "\n If there's a warning about missing keys above, please disregard :)"
279
+ )
280
+
281
+
282
+ if __name__ == "__main__":
283
+ fire.Fire(train)
infer.py ADDED
@@ -0,0 +1,136 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import sys
2
+ import json
3
+
4
+ import fire
5
+ import torch
6
+ from peft import PeftModel
7
+ from transformers import GenerationConfig, LlamaForCausalLM, LlamaTokenizer
8
+
9
+ from utils.prompter import Prompter
10
+
11
+ if torch.cuda.is_available():
12
+ device = "cuda"
13
+
14
+
15
+ class Infer():
16
+ def __init__(
17
+ self,
18
+ load_8bit: bool = False,
19
+ base_model: str = "",
20
+ lora_weights: str = "",
21
+ prompt_template: str = "", # The prompt template to use, will default to alpaca.
22
+ ):
23
+ prompter = Prompter(prompt_template)
24
+ tokenizer = LlamaTokenizer.from_pretrained(base_model)
25
+ model = LlamaForCausalLM.from_pretrained(
26
+ base_model,
27
+ load_in_8bit=load_8bit,
28
+ torch_dtype=torch.float16,
29
+ device_map="auto",
30
+ )
31
+
32
+ try:
33
+ print(f"Using lora {lora_weights}")
34
+ model = PeftModel.from_pretrained(
35
+ model,
36
+ lora_weights,
37
+ torch_dtype=torch.float16,
38
+ )
39
+ except:
40
+ print("*"*50, "\n Attention! No Lora Weights \n", "*"*50)
41
+
42
+ # unwind broken decapoda-research config
43
+ model.config.pad_token_id = tokenizer.pad_token_id = 0 # unk
44
+ model.config.bos_token_id = 1
45
+ model.config.eos_token_id = 2
46
+ if not load_8bit:
47
+ model.half() # seems to fix bugs for some users.
48
+
49
+ model.eval()
50
+
51
+ if torch.__version__ >= "2" and sys.platform != "win32":
52
+ model = torch.compile(model)
53
+
54
+ self.base_model = base_model
55
+ self.lora_weights = lora_weights
56
+ self.model = model
57
+ self.prompter = prompter
58
+ self.tokenizer = tokenizer
59
+
60
+ def generate_output(
61
+ self,
62
+ instruction,
63
+ input=None,
64
+ temperature=0.1,
65
+ top_p=0.75,
66
+ top_k=40,
67
+ num_beams=1,
68
+ max_new_tokens=256,
69
+ **kwargs,
70
+ ):
71
+ prompt = self.prompter.generate_prompt(instruction, input)
72
+ inputs = self.tokenizer(prompt, return_tensors="pt")
73
+ input_ids = inputs["input_ids"].to(device)
74
+ generation_config = GenerationConfig(
75
+ temperature=temperature,
76
+ top_p=top_p,
77
+ top_k=top_k,
78
+ num_beams=num_beams,
79
+ # repetition_penalty=10.0,
80
+ **kwargs,
81
+ )
82
+ with torch.no_grad():
83
+ generation_output = self.model.generate(
84
+ input_ids=input_ids,
85
+ generation_config=generation_config,
86
+ return_dict_in_generate=True,
87
+ output_scores=True,
88
+ max_new_tokens=max_new_tokens,
89
+ )
90
+ s = generation_output.sequences[0]
91
+ output = self.tokenizer.decode(s)
92
+ return self.prompter.get_response(output)
93
+
94
+ def infer_from_file(self, infer_data_path):
95
+ with open(infer_data_path) as f:
96
+ for line in f:
97
+ data = json.loads(line)
98
+ instruction = data["instruction"]
99
+ output = data["output"]
100
+ print('=' * 100)
101
+ print(f"Base Model: {self.base_model} Lora Weights: {self.lora_weights}")
102
+ print("Instruction:\n", instruction)
103
+ model_output = self.generate_output(instruction)
104
+ print("Model Output:\n", model_output)
105
+ print("Ground Truth:\n", output)
106
+ print('=' * 100)
107
+
108
+
109
+ def main(
110
+ load_8bit: bool = False,
111
+ base_model: str = "",
112
+ lora_weights: str = "",
113
+ prompt_template: str = "", # The prompt template to use, will default to alpaca.
114
+ infer_data_path: str = "",
115
+ ):
116
+ infer = Infer(
117
+ load_8bit=load_8bit,
118
+ base_model=base_model,
119
+ lora_weights=lora_weights,
120
+ prompt_template=prompt_template
121
+ )
122
+
123
+ try:
124
+ infer.infer_from_file(infer_data_path)
125
+ except Exception as e:
126
+ print(e, "Read infer_data_path Failed! Now Interactive Mode: ")
127
+ while True:
128
+ print('=' * 100)
129
+ instruction = input("请输入您的问题: ")
130
+ print("LaWGPT:")
131
+ print(infer.generate_output(instruction))
132
+ print('=' * 100)
133
+
134
+
135
+ if __name__ == "__main__":
136
+ fire.Fire(main)
merge.py ADDED
@@ -0,0 +1,74 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+
3
+ import torch
4
+ import transformers
5
+ from peft import PeftModel
6
+ from transformers import LlamaForCausalLM, LlamaTokenizer # noqa: F402
7
+
8
+
9
+ import argparse
10
+ parser = argparse.ArgumentParser(description='Merge Base Model and Lora')
11
+ parser.add_argument('--base_model', type=str, default="minlik/chinese-llama-7b-merged", help='base model path')
12
+ parser.add_argument('--lora_model', type=str, default="entity303/legal-lora-7b", help='lora model path')
13
+ parser.add_argument('--output_dir', type=str, default="./models/base_models/llama-7b-legal-lora-merged", help='output model path')
14
+ args = parser.parse_args()
15
+
16
+ BASE_MODEL = args.base_model
17
+ LORA_MODEL = args.lora_model
18
+ OUTPUT_DIR = args.output_dir
19
+
20
+
21
+ assert (
22
+ BASE_MODEL
23
+ ), "Please specify a value for BASE_MODEL environment variable, e.g. `export BASE_MODEL=huggyllama/llama-7b`" # noqa: E501
24
+
25
+
26
+ print(f"{'*'*20} Using base model: {BASE_MODEL} {'*'*20}")
27
+ print(f"{'*'*20} Using lora model: {LORA_MODEL} {'*'*20}")
28
+ print(f"{'*'*20} Saving to: {OUTPUT_DIR} {'*'*20}")
29
+
30
+ tokenizer = LlamaTokenizer.from_pretrained(BASE_MODEL)
31
+
32
+ base_model = LlamaForCausalLM.from_pretrained(
33
+ BASE_MODEL,
34
+ load_in_8bit=False,
35
+ torch_dtype=torch.float16,
36
+ device_map={"": "cpu"},
37
+ )
38
+
39
+ first_weight = base_model.model.layers[0].self_attn.q_proj.weight
40
+ first_weight_old = first_weight.clone()
41
+
42
+ lora_model = PeftModel.from_pretrained(
43
+ base_model,
44
+ LORA_MODEL,
45
+ device_map={"": "cpu"},
46
+ torch_dtype=torch.float16,
47
+ )
48
+
49
+ lora_weight = lora_model.base_model.model.model.layers[
50
+ 0
51
+ ].self_attn.q_proj.weight
52
+
53
+ assert torch.allclose(first_weight_old, first_weight)
54
+
55
+ # merge weights - new merging method from peft
56
+ lora_model = lora_model.merge_and_unload()
57
+
58
+ lora_model.train(False)
59
+
60
+ # did we do anything?
61
+ assert not torch.allclose(first_weight_old, first_weight)
62
+
63
+ lora_model_sd = lora_model.state_dict()
64
+ deloreanized_sd = {
65
+ k.replace("base_model.model.", ""): v
66
+ for k, v in lora_model_sd.items()
67
+ if "lora" not in k
68
+ }
69
+
70
+ LlamaForCausalLM.save_pretrained(
71
+ base_model, OUTPUT_DIR, state_dict=deloreanized_sd, max_shard_size="2048MB"
72
+ )
73
+
74
+ LlamaTokenizer.save_pretrained(tokenizer, OUTPUT_DIR)
models/base_models/.gitkeep ADDED
File without changes
models/lora_weights/.gitkeep ADDED
File without changes
outputs/.gitkeep ADDED
File without changes
requirements.txt ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ accelerate
2
+ appdirs
3
+ bitsandbytes
4
+ black
5
+ black[jupyter]
6
+ datasets
7
+ fire
8
+ git+https://github.com/huggingface/peft.git@e536616888d51b453ed354a6f1e243fecb02ea08
9
+ git+https://github.com/huggingface/transformers.git
10
+ gradio
11
+ sentencepiece
12
+ wandb
13
+ scipy
14
+ socksio
resources/criminal_charges.json ADDED
The diff for this file is too large to render. See raw diff
 
resources/example_infer_data.json ADDED
@@ -0,0 +1,5 @@
 
 
 
 
 
 
1
+ {"instruction":"请介绍赌博罪的定义。","input":"","output":"无"}
2
+ {"instruction":"请问加班工资怎么算?","input":"","output":"无"}
3
+ {"instruction":"民间借贷受国家保护的合法利息是多少?","input":"","output":"无"}
4
+ {"instruction":"欠了信用卡的钱还不上要坐牢吗?","input":"","output":"无"}
5
+ {"instruction":"你能否写一段抢劫罪罪名的案情描述?","input":"","output":"无"}
resources/example_instruction_train.json ADDED
@@ -0,0 +1,8 @@
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "content": "中华人民共和国最高人民法院 再 审 决 定 书(2022)最高法刑申136号 原审被告人张某某犯挪用资金罪和伪造、变造国家机关公文罪一案,山西省运城市盐湖区人民法院于2012年5月2日以(2012)运盐刑初字第69号刑事判决,认定张克云犯贪污罪,判处有期徒刑十二年,犯伪造、变造国家机关公文罪,判处有期徒刑三年,决定执行有期徒刑十三年。宣判后,张克云不服,提出上诉。山西省运城市中级人民法院于2012年11月12日以(2012)运中刑二终字第125号刑事裁定,驳回上诉,维持原判。裁判生效后,张克云不服,提出申诉。运城市中级人民法院于2013年1月7日以(2013)运中刑申字第3号驳回申诉通知,驳回其申诉。山西省高级人民法院于2017年7月13日以(2013)晋刑监字第8号再审决定,提审本案,并于2019年12月24日以(2017)晋刑再第2号刑事判决,认定张克云犯挪用资金罪,判处有期徒刑七年六个月,与原判伪造、变造国家机关公文罪被判处的有期徒刑三年数罪并罚,决定执行有期徒刑十年。张克云仍不服,以原审认定事实错误,其作为学校董事长、全资投资人有权决定学校相关款项用途,学校仍欠其债务,个人账户用于学校经费开支,没有挪用资金的动机和行为,不构成挪用资金罪等为由,向本院提出申诉。本院经审查认为,原审生效裁判对挪用资金罪定罪量刑的证据不确实、不充分,依法应当予以排除。依照《中华人民共和国刑事诉讼法》第二百五十三条第二项、第二百五十四条第二款、第二百五十五条的规定,决定如下:指令河南省高级人民法院对本案进行再审。二〇二二年十二月二十九日"
4
+ },
5
+ {
6
+ "content":"中华人民共和国最高人民法院 驳 回 申 诉 通 知 书(2022)最高法刑申122号 袁某银、袁某财:你们因原审被告人袁德银故意伤害一案,对江苏省南京市溧水区人民法院(2014)溧刑初字第268号刑事判决、南京市中级人民法院(2015)宁刑终字第433号刑事裁定不服,以被害人朱宽荣住院期间的CT(136678号)报告并未显示其左侧4、5、6、7、8肋骨骨折,出院记录及137470号、143006号CT报告均系伪造,江苏省高级人民法院(2019)苏刑申172号驳回申诉通知书对137470号CT报告的形成时间认定错误为由,向本院提出申诉,请求撤销原判,依法重新审理本案。本院依法组成合议庭认真审查后认为,原审认定原审被告人袁德银因邻里纠纷,殴打被害人朱宽荣致其左胸多发肋骨骨折,构成轻伤二级,其行为构成故意伤害罪,并无不当。关于你们提出的原审认定被害人朱宽荣轻伤二级的证据系伪造的申诉理由。首先,根据你们提供的136678号CT报告,朱宽荣于2015年2月12日入院时经CT检查被诊断为左侧多发肋骨骨折,该份CT报告虽未明确骨折的具体位置,但与出院记录记载的“左侧多发肋骨骨折(4、5、6、7、8)”并不矛盾。根据《人体损伤程度鉴定标准》的规定,肋骨骨折2处以上即构成轻伤二级,故鉴定意见认定朱宽荣的损伤构成轻伤二级并无不当。其次,你们主张出院记录、137470号和143006号CT报告系伪造,但并未提供证据证实。即使排除这两份CT报告,也不影响对本案事实的认定。再次,我院对申诉进行复查的对象是已经发生法律效力的判决、裁定,本案的生效裁判是(2014)溧刑初字第268号刑事判决和(2015)宁刑终字第433号刑事裁定,江苏省高级人民法院作出的驳回申诉通知书不属于我院复查的范围。综上,本院认为,你们的申诉不符合《中华人民共和国刑事诉讼法》第二百五十三条规定的应当重新审判的情形,予以驳回。望你们尊重人民法院的生效裁判,自觉服判息诉。特此通知。二〇二二年十二月十四日"
7
+ }
8
+ ]
resources/example_instruction_tune.json ADDED
@@ -0,0 +1,12 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "instruction": "酒驾撞人要判多久?",
4
+ "input": "",
5
+ "output": "《刑法》第一百三十三条规定:违反交通运输管理法规,因而发生重大事故,致人重伤、死广或者使公私财产遭受重大损失的,处三年以下有期徒刑或者拘役;交通运输肇事后逃逸,致人重伤的,处三年以上七年以下有期徒刑。交通肇事后逃逸致人死亡的,处七年以上有期徒刑。"
6
+ },
7
+ {
8
+ "instruction": "偷狗被派出所抓到,会怎么处理?",
9
+ "input": "",
10
+ "output": "取决于偷盗的狗的价值,可能按盗窃罪的罪名处理。如果价值达到犯罪标准,就构成盗窃罪,要承担刑事责任;如果不到犯罪标准,就是治安处罚、罚款或者拘留治安处罚这会涉嫌构成盗窃。如果不到一千元,则不会构成犯罪。如果超过一千元,则可能会是构成犯罪的。"
11
+ }
12
+ ]
resources/legal_vocab.txt ADDED
The diff for this file is too large to render. See raw diff
 
scripts/finetune.sh ADDED
@@ -0,0 +1,56 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/bin/bash
2
+ export WANDB_MODE=disabled # 禁用wandb
3
+
4
+ # 使用chinese-alpaca-plus-7b-merged模型在law_data.json数据集上finetune
5
+ experiment_name="chinese-alpaca-plus-7b-law-e1"
6
+
7
+ # 单卡或者模型并行
8
+ python finetune.py \
9
+ --base_model "minlik/chinese-alpaca-plus-7b-merged" \
10
+ --data_path "./data/finetune_law_data.json" \
11
+ --output_dir "./outputs/"${experiment_name} \
12
+ --batch_size 64 \
13
+ --micro_batch_size 8 \
14
+ --num_epochs 20 \
15
+ --learning_rate 3e-4 \
16
+ --cutoff_len 256 \
17
+ --val_set_size 0 \
18
+ --lora_r 8 \
19
+ --lora_alpha 16 \
20
+ --lora_dropout 0.05 \
21
+ --lora_target_modules "[q_proj,v_proj]" \
22
+ --train_on_inputs False \
23
+ --add_eos_token True \
24
+ --group_by_length False \
25
+ --wandb_project "" \
26
+ --wandb_run_name "" \
27
+ --wandb_watch "" \
28
+ --wandb_log_model "" \
29
+ --resume_from_checkpoint "./outputs/"${experiment_name} \
30
+ --prompt_template_name "alpaca" \
31
+
32
+
33
+ # 多卡数据并行
34
+ # WORLD_SIZE=8 CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7 torchrun --nproc_per_node=8 --master_port=1234 finetune.py \
35
+ # --base_model "minlik/chinese-alpaca-plus-7b-merged" \
36
+ # --data_path "./data/finetune_law_data.json" \
37
+ # --output_dir "./outputs/"${experiment_name} \
38
+ # --batch_size 64 \
39
+ # --micro_batch_size 8 \
40
+ # --num_epochs 20 \
41
+ # --learning_rate 3e-4 \
42
+ # --cutoff_len 256 \
43
+ # --val_set_size 0 \
44
+ # --lora_r 8 \
45
+ # --lora_alpha 16 \
46
+ # --lora_dropout 0.05 \
47
+ # --lora_target_modules "[q_proj,v_proj]" \
48
+ # --train_on_inputs True \
49
+ # --add_eos_token True \
50
+ # --group_by_length False \
51
+ # --wandb_project \
52
+ # --wandb_run_name \
53
+ # --wandb_watch \
54
+ # --wandb_log_model \
55
+ # --resume_from_checkpoint "./outputs/"${experiment_name} \
56
+ # --prompt_template_name "alpaca" \
scripts/infer.sh ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+
2
+ python infer.py \
3
+ --load_8bit True \
4
+ --base_model 'minlik/chinese-llama-7b-merged' \
5
+ --lora_weights 'entity303/lawgpt-lora-7b' \
6
+ --prompt_template 'law_template' \
7
+ --infer_data_path './resources/example_infer_data.json'
scripts/merge.sh ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ python merge.py \
2
+ --base_model 'minlik/chinese-llama-7b-merged' \
3
+ --lora_model 'entity303/legal-lora-7b' \
4
+ --output_dir './models/base_models/legal_base-7b' \
scripts/train_clm.sh ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/bin/bash
2
+
3
+ WORLD_SIZE=8 CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7 torchrun --nproc_per_node=8 --master_port=1235 train_clm.py \
4
+ --base_model './models/base_models/chinese_llama_7b' \
5
+ --data_path './data/train_clm_data.json' \
6
+ --output_dir './outputs/train-clm' \
7
+ --batch_size 128 \
8
+ --micro_batch_size 8 \
9
+ --num_epochs 1 \
10
+ --learning_rate 0.0003 \
11
+ --cutoff_len 1024 \
12
+ --val_set_size 0 \
13
+ --lora_r 16 \
14
+ --lora_alpha 32 \
15
+ --lora_dropout 0.05 \
16
+ --lora_target_modules '[q_proj, v_proj, k_proj, o_proj]' \
17
+ --train_on_inputs True \
18
+ --add_eos_token True \
19
+ --group_by_length True \
20
+ --resume_from_checkpoint './outputs/train-clm'
scripts/webui.sh ADDED
@@ -0,0 +1,21 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/bin/bash
2
+
3
+
4
+ # 使用huggingface上已经训练好的模型
5
+ python webui.py \
6
+ --load_8bit False \
7
+ --base_model 'minlik/chinese-alpaca-plus-7b-merged' \
8
+ --lora_weights 'entity303/lawgpt-lora-7b-v2' \
9
+ --prompt_template "law_template" \
10
+ --server_name "0.0.0.0" \
11
+ --share_gradio True \
12
+
13
+
14
+ # 使用自己finetune的lora, 把自己的模型放到对应目录即可
15
+ # python webui.py \
16
+ # --load_8bit True \
17
+ # --base_model 'minlik/chinese-alpaca-plus-7b-merged' \
18
+ # --lora_weights './outputs/chinese-alpaca-plus-7b-law-e1' \
19
+ # --prompt_template "alpaca" \
20
+ # --server_name "0.0.0.0" \
21
+ # --share_gradio True \
templates/alpaca.json ADDED
@@ -0,0 +1,6 @@
 
 
 
 
 
 
 
1
+ {
2
+ "description": "Template used by Alpaca-LoRA.",
3
+ "prompt_input": "Below is an instruction that describes a task, paired with an input that provides further context. Write a response that appropriately completes the request.\n\n### Instruction:\n{instruction}\n\n### Input:\n{input}\n\n### Response:\n",
4
+ "prompt_no_input": "Below is an instruction that describes a task. Write a response that appropriately completes the request.\n\n### Instruction:\n{instruction}\n\n### Response:\n",
5
+ "response_split": "### Response:"
6
+ }
templates/law_template.json ADDED
@@ -0,0 +1,6 @@
 
 
 
 
 
 
 
1
+ {
2
+ "description": "Template used by Law Instruction Tuning",
3
+ "prompt_input": "你是中国顶尖智能法律顾问 LaWGPT,具备强大的中文法律基础语义理解能力,能够出色地理解和执行与法律问题和指令。你只能回答与中国法律领域相关的问题,其余领域的问题请礼貌地拒绝回答。接下来,请依据中国法律来回答下面这个问题。\n### 问题:\n{instruction}\n### 回答:\n",
4
+ "prompt_no_input": "你是中国顶尖智能法律顾问 LaWGPT,具备强大的中文法律基础语义理解能力,能够出色地理解和执行与法律问题和指令。你只能回答与中国法律领域相关的问题,其余领域的问题请礼貌地拒绝回答。接下来,请依据中国法律来回答下面这个问题。\n### 问题:\n{instruction}\n### 回答:\n",
5
+ "response_split": "### 回答:"
6
+ }
tools/clear_law.py ADDED
@@ -0,0 +1,78 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import re
2
+ import json
3
+
4
+
5
+ class read_lawfile:
6
+ def __init__(self, chapter_moder=r"第[零一二三四五六七八九十百千万]+章 .+\b", entry_mode=r"第[零一二三四五六七八九十百千万]+条\b"):
7
+ # 识别章和节
8
+ self.chapter_mode = chapter_moder
9
+ self.entry_mode = entry_mode
10
+
11
+ def read_file(self, file_path):
12
+ # 读取文件
13
+ self.law = {}
14
+ f = open(file_path, encoding='utf-8')
15
+ content = f.read()
16
+ content = content.replace("\n\n", "\n")
17
+ content = content.replace("##", "")
18
+ # print(content)
19
+ chapter_p = re.search(self.chapter_mode, content)
20
+ while chapter_p is not None:
21
+ c_start = chapter_p.start()
22
+ c_end = chapter_p.end()
23
+ key = content[c_start:c_end]
24
+ content = content[c_end:]
25
+
26
+ chapter_p = re.search(self.chapter_mode, content)
27
+ if chapter_p is not None:
28
+ end = chapter_p.start()
29
+ c_content = content[:end]
30
+ self.law[key] = self.read_entrys(c_content)
31
+ # print(content[c_start:c_end])
32
+ else:
33
+ self.law[key] = self.read_entrys(content)
34
+ f.close()
35
+ return self.law
36
+
37
+ def read_entrys(self, content):
38
+ entrys = {}
39
+ entry_p = re.search(self.entry_mode, content)
40
+ while entry_p is not None:
41
+ e_start = entry_p.start()
42
+ e_end = entry_p.end()
43
+ key = content[e_start:e_end]
44
+ content = content[e_end+1:]
45
+
46
+ entry_p = re.search(self.entry_mode, content)
47
+ if entry_p is not None:
48
+ end = entry_p.start()
49
+ e_content = content[:end]
50
+ entrys[key] = e_content
51
+ else:
52
+ entrys[key] = content
53
+ return entrys
54
+ # entry_p = re.search(entry_mode, content)
55
+ # while entry_p is not None:
56
+ # start = entry_p.start()
57
+ # end = entry_p.end()
58
+ # # print(content[start:end])
59
+ # content = content[end:]
60
+ # law[content[start:end]] = read_entrys(content)
61
+ # chapter_p = re.search(chapter_mode, content)
62
+
63
+ def show(self):
64
+ for key in self.law:
65
+ print(key, '\n')
66
+ for item in self.law[key]:
67
+ print(item, ' ', self.law[key][item])
68
+
69
+
70
+ if __name__ == '__main__':
71
+ file_path = "D:/11496/Documents/project/Laws-master/经济法/价格法(1997-12-29).md"
72
+ r = read_lawfile()
73
+ dict = r.read_file(file_path)
74
+ r.show()
75
+ print(dict)
76
+ with open('./a.json', 'w') as f:
77
+ # json.dumps(dict, f, ensure_ascii=False)
78
+ json.dump(dict, f, ensure_ascii=False)
tools/merge_vocabulary.py ADDED
@@ -0,0 +1,63 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from transformers import LlamaTokenizer
2
+ from sentencepiece import sentencepiece_model_pb2 as model
3
+ import sentencepiece as sp
4
+ import argparse
5
+ import os
6
+
7
+ if __name__ == '__main__':
8
+ # Load arguments
9
+ parser = argparse.ArgumentParser()
10
+ parser.add_argument('--load_path', default='../src/models/base_model/chinese_llama_7b/tokenizer_chinese.model', type=str)
11
+ parser.add_argument('--save_dir', default='../src/models/base_model/save_chinese', type=str)
12
+ parser.add_argument('--voc_path', default='../data/vocabulary/legal_vocab_processed.txt', type=str)
13
+ args = parser.parse_args()
14
+
15
+ LOAD_PATH = args.load_path
16
+ SAVE_DIR = args.save_dir
17
+ VOC_PATH = args.voc_path
18
+
19
+ # Load pre-trained llama tokenizer and sentencepiece model
20
+ llama_spm = model.ModelProto()
21
+ llama_spm.ParseFromString(open(LOAD_PATH, "rb").read())
22
+
23
+ # show size of llama's vocabulary
24
+ llama_spm_tokens_set = set(p.piece for p in llama_spm.pieces)
25
+ print(f"Size of initial llama's vocabulary: {len(llama_spm_tokens_set)}")
26
+
27
+ # Load custom vocabulary
28
+ new_tokens = open(VOC_PATH, "r").read().split("\n")
29
+ for token in new_tokens:
30
+ if token not in llama_spm_tokens_set:
31
+ new_token = model.ModelProto().SentencePiece()
32
+ new_token.piece = token
33
+ new_token.score = 0
34
+ llama_spm.pieces.append(new_token)
35
+ print(f"Size of merged llama's vocabulary: {len(llama_spm.pieces)}")
36
+
37
+ # save
38
+ os.makedirs(SAVE_DIR, exist_ok=True)
39
+ SAVE_MODEL_PATH = os.path.join(SAVE_DIR, 'tokenizer.model')
40
+ SAVE_VOCAB_PATH = os.path.join(SAVE_DIR, 'tokenizer.vocab')
41
+ with open(SAVE_MODEL_PATH, 'wb') as f:
42
+ f.write(llama_spm.SerializeToString())
43
+ with open(SAVE_VOCAB_PATH, 'w') as f:
44
+ f.writelines([f'{token.piece} {token.score}\n' for token in llama_spm.pieces])
45
+ tokenizer = LlamaTokenizer(SAVE_MODEL_PATH)
46
+ tokenizer.save_pretrained(SAVE_DIR)
47
+ print(f'New llama tokenizer and spm has been saved to {SAVE_DIR}')
48
+
49
+ # test
50
+ llama_tokenizer_old = LlamaTokenizer.from_pretrained(LOAD_PATH)
51
+ llama_tokenizer_new = LlamaTokenizer.from_pretrained(SAVE_DIR)
52
+ text = '''登记错误赔偿责任登记等手续登记等手续生效登记机构和登记办法登记机构赔偿后登记机构应当提供登记收费问题'''
53
+
54
+ print(f'Size of old vocabulary: {llama_tokenizer_old.vocab_size}')
55
+ print(f'Size of new vocabulary: {llama_tokenizer_new.vocab_size}')
56
+ print('All special tokens and ids in new llama:')
57
+ print(llama_tokenizer_new.all_special_tokens)
58
+ print(llama_tokenizer_new.all_special_ids)
59
+ print(llama_tokenizer_new.special_tokens_map)
60
+
61
+ print(f'Text:\n{text}')
62
+ print(f'Tokenized by LLaMA tokenizer:\n {llama_tokenizer_old.tokenize(text)}')
63
+ print(f'Tokenized by NEW LLaMA tokenizer:\n {llama_tokenizer_new.tokenize(text)}')
train_clm.py ADDED
@@ -0,0 +1,259 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import sys
3
+ from typing import List
4
+
5
+ import fire
6
+ import torch
7
+ import transformers
8
+ from datasets import load_dataset
9
+
10
+ from peft import (
11
+ LoraConfig,
12
+ get_peft_model,
13
+ get_peft_model_state_dict,
14
+ prepare_model_for_int8_training,
15
+ set_peft_model_state_dict,
16
+ )
17
+ from transformers import LlamaForCausalLM, LlamaTokenizer
18
+ from utils.prompter import Prompter
19
+
20
+
21
+ def train(
22
+ # model/data params
23
+ base_model: str = "./models/base_models/your_base_model_dir",
24
+ data_path: str = "./data/your_data.json",
25
+ output_dir: str = "./outputs/your_version_dir",
26
+
27
+ # training hyperparams
28
+ batch_size: int = 128,
29
+ micro_batch_size: int = 4,
30
+ num_epochs: int = 10,
31
+ learning_rate: float = 3e-4,
32
+ cutoff_len: int = 512,
33
+ val_set_size: int = 2000,
34
+
35
+ # lora hyperparams
36
+ lora_r: int = 8,
37
+ lora_alpha: int = 16,
38
+ lora_dropout: float = 0.05,
39
+ lora_target_modules: List[str] = ["q_proj", "v_proj",],
40
+
41
+ # llm hyperparams
42
+ train_on_inputs: bool = True, # if False, masks out inputs in loss
43
+ add_eos_token: bool = True,
44
+ group_by_length: bool = False, # faster, but produces an odd training loss curve
45
+
46
+ # wandb params
47
+ wandb_project: str = "",
48
+ wandb_run_name: str = "",
49
+ wandb_watch: str = "", # options: false | gradients | all
50
+ wandb_log_model: str = "", # options: false | true
51
+
52
+ # either training checkpoint or final adapter
53
+ resume_from_checkpoint: str = None,
54
+
55
+ # The prompt template to use, will default to alpaca.
56
+ prompt_template_name: str = "alpaca",
57
+ ):
58
+ if int(os.environ.get("LOCAL_RANK", 0)) == 0:
59
+ print(
60
+ f"Training Alpaca-LoRA model with params:\n"
61
+ f"base_model: {base_model}\n"
62
+ f"data_path: {data_path}\n"
63
+ f"output_dir: {output_dir}\n"
64
+ f"batch_size: {batch_size}\n"
65
+ f"micro_batch_size: {micro_batch_size}\n"
66
+ f"num_epochs: {num_epochs}\n"
67
+ f"learning_rate: {learning_rate}\n"
68
+ f"cutoff_len: {cutoff_len}\n"
69
+ f"val_set_size: {val_set_size}\n"
70
+ f"lora_r: {lora_r}\n"
71
+ f"lora_alpha: {lora_alpha}\n"
72
+ f"lora_dropout: {lora_dropout}\n"
73
+ f"lora_target_modules: {lora_target_modules}\n"
74
+ f"train_on_inputs: {train_on_inputs}\n"
75
+ f"add_eos_token: {add_eos_token}\n"
76
+ f"group_by_length: {group_by_length}\n"
77
+ f"wandb_project: {wandb_project}\n"
78
+ f"wandb_run_name: {wandb_run_name}\n"
79
+ f"wandb_watch: {wandb_watch}\n"
80
+ f"wandb_log_model: {wandb_log_model}\n"
81
+ f"resume_from_checkpoint: {resume_from_checkpoint or False}\n"
82
+ f"prompt template: {prompt_template_name}\n"
83
+ )
84
+ gradient_accumulation_steps = batch_size // micro_batch_size
85
+
86
+ prompter = Prompter(prompt_template_name)
87
+
88
+ # Configure device and distributed training
89
+ device_map = "auto"
90
+ world_size = int(os.environ.get("WORLD_SIZE", 1))
91
+ ddp = world_size != 1
92
+ if ddp:
93
+ device_map = {"": int(os.environ.get("LOCAL_RANK") or 0)}
94
+ gradient_accumulation_steps = gradient_accumulation_steps // world_size
95
+
96
+ # Check if parameter passed or if set within environ
97
+ use_wandb = len(wandb_project) > 0 or (
98
+ "WANDB_PROJECT" in os.environ and len(os.environ["WANDB_PROJECT"]) > 0)
99
+
100
+ # Only overwrite environ if wandb param passed
101
+ if len(wandb_project) > 0:
102
+ os.environ["WANDB_PROJECT"] = wandb_project
103
+ if len(wandb_watch) > 0:
104
+ os.environ["WANDB_WATCH"] = wandb_watch
105
+ if len(wandb_log_model) > 0:
106
+ os.environ["WANDB_LOG_MODEL"] = wandb_log_model
107
+
108
+ model = LlamaForCausalLM.from_pretrained(
109
+ base_model,
110
+ load_in_8bit=True,
111
+ torch_dtype=torch.float16,
112
+ device_map=device_map,
113
+ )
114
+
115
+ tokenizer = LlamaTokenizer.from_pretrained(base_model)
116
+ tokenizer.bos_token_id = 1
117
+ tokenizer.eos_token_id = 2
118
+ bos = tokenizer.bos_token_id
119
+ eos = tokenizer.eos_token_id
120
+ pad = tokenizer.pad_token_id
121
+
122
+ print("pre-trained model's BOS EOS and PAD token id:",
123
+ bos, eos, pad, " => It should be 1,2,none")
124
+
125
+ tokenizer.pad_token_id = (
126
+ 0 # unk. we want this to be different from the eos token
127
+ )
128
+ tokenizer.padding_side = "left" # Allow batched inference
129
+
130
+ def tokenize(prompt, add_eos_token=True):
131
+ # there's probably a way to do this with the tokenizer settings
132
+ # but again, gotta move fast
133
+ result = tokenizer(
134
+ prompt,
135
+ truncation=True,
136
+ max_length=cutoff_len,
137
+ padding=False,
138
+ return_tensors=None,
139
+ )
140
+ if (
141
+ result["input_ids"][-1] != tokenizer.eos_token_id
142
+ and len(result["input_ids"]) < cutoff_len
143
+ and add_eos_token
144
+ ):
145
+ result["input_ids"].append(tokenizer.eos_token_id)
146
+ result["attention_mask"].append(1)
147
+
148
+ result["labels"] = result["input_ids"].copy()
149
+
150
+ return result
151
+
152
+ def generate_and_tokenize_prompt(data_point):
153
+ text = data_point['content']
154
+ tokenized_full_prompt = tokenize(text)
155
+ return tokenized_full_prompt
156
+
157
+ model = prepare_model_for_int8_training(model)
158
+
159
+ config = LoraConfig(
160
+ r=lora_r,
161
+ lora_alpha=lora_alpha,
162
+ target_modules=lora_target_modules,
163
+ lora_dropout=lora_dropout,
164
+ bias="none",
165
+ task_type="CAUSAL_LM",
166
+ )
167
+ model = get_peft_model(model, config)
168
+
169
+ if data_path.endswith(".json") or data_path.endswith(".jsonl"):
170
+ data = load_dataset("json", data_files=data_path)
171
+ else:
172
+ data = load_dataset(data_path)
173
+
174
+ if resume_from_checkpoint:
175
+ # Check the available weights and load them
176
+ checkpoint_name = os.path.join(
177
+ resume_from_checkpoint, "pytorch_model.bin"
178
+ ) # Full checkpoint
179
+ if not os.path.exists(checkpoint_name):
180
+ checkpoint_name = os.path.join(
181
+ resume_from_checkpoint, "adapter_model.bin"
182
+ ) # only LoRA model - LoRA config above has to fit
183
+ resume_from_checkpoint = (
184
+ False # So the trainer won't try loading its state
185
+ )
186
+ # The two files above have a different name depending on how they were saved, but are actually the same.
187
+ if os.path.exists(checkpoint_name):
188
+ print(f"Restarting from {checkpoint_name}")
189
+ adapters_weights = torch.load(checkpoint_name)
190
+ set_peft_model_state_dict(model, adapters_weights)
191
+ else:
192
+ print(f"Checkpoint {checkpoint_name} not found")
193
+
194
+ # Be more transparent about the % of trainable params.
195
+ model.print_trainable_parameters()
196
+
197
+ if val_set_size > 0:
198
+ train_val = data["train"].train_test_split(test_size=val_set_size, shuffle=True, seed=42)
199
+ train_data = (train_val["train"].shuffle().map(generate_and_tokenize_prompt))
200
+ val_data = (train_val["test"].shuffle().map(generate_and_tokenize_prompt))
201
+ else:
202
+ train_data = data["train"].shuffle().map(generate_and_tokenize_prompt)
203
+ val_data = None
204
+
205
+ if not ddp and torch.cuda.device_count() > 1:
206
+ # keeps Trainer from trying its own DataParallelism when more than 1 gpu is available
207
+ model.is_parallelizable = True
208
+ model.model_parallel = True
209
+
210
+ trainer = transformers.Trainer(
211
+ model=model,
212
+ train_dataset=train_data,
213
+ eval_dataset=val_data,
214
+ args=transformers.TrainingArguments(
215
+ per_device_train_batch_size=micro_batch_size,
216
+ gradient_accumulation_steps=gradient_accumulation_steps,
217
+ warmup_steps=100,
218
+ num_train_epochs=num_epochs,
219
+ learning_rate=learning_rate,
220
+ fp16=True,
221
+ logging_steps=10,
222
+ optim="adamw_torch",
223
+ evaluation_strategy="steps" if val_set_size > 0 else "no",
224
+ save_strategy="steps",
225
+ eval_steps=100 if val_set_size > 0 else None,
226
+ save_steps=100,
227
+ output_dir=output_dir,
228
+ save_total_limit=3,
229
+ load_best_model_at_end=True if val_set_size > 0 else False,
230
+ ddp_find_unused_parameters=False if ddp else None,
231
+ group_by_length=group_by_length,
232
+ report_to="wandb" if use_wandb else None,
233
+ run_name=wandb_run_name if use_wandb else None,
234
+ ),
235
+ data_collator=transformers.DataCollatorForSeq2Seq(
236
+ tokenizer, pad_to_multiple_of=8, return_tensors="pt", padding=True
237
+ ),
238
+ )
239
+ model.config.use_cache = False
240
+
241
+ old_state_dict = model.state_dict
242
+ model.state_dict = (
243
+ lambda self, *_, **__: get_peft_model_state_dict(
244
+ self, old_state_dict()
245
+ )
246
+ ).__get__(model, type(model))
247
+
248
+ if torch.__version__ >= "2" and sys.platform != "win32":
249
+ model = torch.compile(model)
250
+
251
+ trainer.train(resume_from_checkpoint=resume_from_checkpoint)
252
+
253
+ model.save_pretrained(output_dir)
254
+
255
+ print("\n If there's a warning about missing keys above, please disregard :)")
256
+
257
+
258
+ if __name__ == "__main__":
259
+ fire.Fire(train)
utils/__init__.py ADDED
File without changes
utils/callbacks.py ADDED
@@ -0,0 +1,75 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """
2
+ Helpers to support streaming generate output.
3
+ Borrowed from https://github.com/oobabooga/text-generation-webui/blob/ad37f396fc8bcbab90e11ecf17c56c97bfbd4a9c/modules/callbacks.py
4
+ """
5
+
6
+ import gc
7
+ import traceback
8
+ from queue import Queue
9
+ from threading import Thread
10
+
11
+ import torch
12
+ import transformers
13
+
14
+
15
+ class Stream(transformers.StoppingCriteria):
16
+ def __init__(self, callback_func=None):
17
+ self.callback_func = callback_func
18
+
19
+ def __call__(self, input_ids, scores) -> bool:
20
+ if self.callback_func is not None:
21
+ self.callback_func(input_ids[0])
22
+ return False
23
+
24
+
25
+ class Iteratorize:
26
+
27
+ """
28
+ Transforms a function that takes a callback
29
+ into a lazy iterator (generator).
30
+ """
31
+
32
+ def __init__(self, func, kwargs={}, callback=None):
33
+ self.mfunc = func
34
+ self.c_callback = callback
35
+ self.q = Queue()
36
+ self.sentinel = object()
37
+ self.kwargs = kwargs
38
+ self.stop_now = False
39
+
40
+ def _callback(val):
41
+ if self.stop_now:
42
+ raise ValueError
43
+ self.q.put(val)
44
+
45
+ def gentask():
46
+ try:
47
+ ret = self.mfunc(callback=_callback, **self.kwargs)
48
+ except ValueError:
49
+ pass
50
+ except:
51
+ traceback.print_exc()
52
+ pass
53
+
54
+ self.q.put(self.sentinel)
55
+ if self.c_callback:
56
+ self.c_callback(ret)
57
+
58
+ self.thread = Thread(target=gentask)
59
+ self.thread.start()
60
+
61
+ def __iter__(self):
62
+ return self
63
+
64
+ def __next__(self):
65
+ obj = self.q.get(True, None)
66
+ if obj is self.sentinel:
67
+ raise StopIteration
68
+ else:
69
+ return obj
70
+
71
+ def __enter__(self):
72
+ return self
73
+
74
+ def __exit__(self, exc_type, exc_val, exc_tb):
75
+ self.stop_now = True
utils/evaluate.py ADDED
@@ -0,0 +1,196 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import math
2
+ import os
3
+ import sys
4
+
5
+ import fire
6
+ from tqdm import tqdm
7
+ import pandas as pd
8
+ import torch
9
+ import transformers
10
+ from peft import PeftModel
11
+ import datasets
12
+ from transformers import GenerationConfig, LlamaForCausalLM, LlamaTokenizer
13
+
14
+ from utils.callbacks import Iteratorize, Stream
15
+ from utils.prompter import Prompter
16
+
17
+ device = "cuda"
18
+
19
+
20
+ def main(
21
+ load_8bit: bool = True,
22
+ base_model: str = "decapoda-research/llama-7b-hf",
23
+ lora_weights: str = "./lora-alpaca",
24
+ data_path: str = "./data",
25
+ output_path: str = "./output",
26
+ eval_rate: float = 0.1,
27
+ batch_size: int = 32,
28
+ # The prompt template to use, will default to alpaca.
29
+ prompt_template: str = "alpaca",
30
+ ):
31
+ base_model = base_model or os.environ.get("BASE_MODEL", "")
32
+ assert (base_model), "Please specify a --base_model, e.g. --base_model='huggyllama/llama-7b'"
33
+
34
+ prompter = Prompter(prompt_template)
35
+ tokenizer = LlamaTokenizer.from_pretrained(base_model)
36
+ if device == "cuda":
37
+ model = LlamaForCausalLM.from_pretrained(
38
+ base_model,
39
+ load_in_8bit=load_8bit,
40
+ torch_dtype=torch.float16,
41
+ device_map="auto",
42
+ )
43
+ model = PeftModel.from_pretrained(
44
+ model,
45
+ lora_weights,
46
+ torch_dtype=torch.float16,
47
+ )
48
+
49
+ # unwind broken decapoda-research config
50
+ model.config.pad_token_id = tokenizer.pad_token_id = 0 # unk
51
+ model.config.bos_token_id = 1
52
+ model.config.eos_token_id = 2
53
+
54
+ if not load_8bit:
55
+ model.half() # seems to fix bugs for some users.
56
+
57
+ model.eval()
58
+ if torch.__version__ >= "2" and sys.platform != "win32":
59
+ model = torch.compile(model)
60
+
61
+ def evaluate_one(
62
+ instruction,
63
+ input=None,
64
+ temperature=0.1,
65
+ top_p=0.75,
66
+ top_k=40,
67
+ num_beams=2,
68
+ max_new_tokens=128,
69
+ **kwargs,
70
+ ):
71
+ prompt = prompter.generate_prompt(instruction, input)
72
+ inputs = tokenizer(prompt, return_tensors="pt")
73
+ input_ids = inputs["input_ids"].to(device)
74
+ generation_config = GenerationConfig(
75
+ temperature=temperature,
76
+ top_p=top_p,
77
+ top_k=top_k,
78
+ num_beams=num_beams,
79
+ **kwargs,
80
+ )
81
+
82
+ # Without streaming
83
+ with torch.no_grad():
84
+ generation_output = model.generate(
85
+ input_ids=input_ids,
86
+ generation_config=generation_config,
87
+ return_dict_in_generate=True,
88
+ output_scores=True,
89
+ max_new_tokens=max_new_tokens,
90
+ )
91
+ s = generation_output.sequences[0]
92
+ output = tokenizer.decode(s, skip_special_tokens=True)
93
+ return prompter.get_response(output)
94
+
95
+ def evaluate_all():
96
+ # data = datasets.load_dataset("json", data_files=data_path)
97
+ # data = data["train"]
98
+ # df = data.to_pandas()
99
+ df = pd.read_json(data_path, orient='records')
100
+ print(df.info())
101
+ # 计算准确率
102
+ correct = 0
103
+ total = 0
104
+ total_step = len(df)
105
+ pbar = tqdm(total=total_step, unit='batch')
106
+ error = []
107
+ for i in range(total_step):
108
+ instruction = df['instruction'].iloc[i]
109
+ input = df['input'].iloc[i]
110
+ label = df['output'].iloc[i]
111
+ pred = evaluate_one(instruction=instruction, input=input)
112
+ if pred == label:
113
+ correct += 1
114
+ else:
115
+ error.append((label, pred))
116
+ total += 1
117
+ acc = correct / total
118
+ # 更新进度条
119
+ # Update the progress bar
120
+ pbar.set_description(
121
+ f"Testing: Sample [{total}/{total_step}] Acc: {acc :.4f}")
122
+ pbar.update(1)
123
+
124
+ for e in error:
125
+ print(e)
126
+
127
+ def evaluate_by_batch(
128
+ temperature=0.1,
129
+ top_p=0.75,
130
+ top_k=40,
131
+ num_beams=1,
132
+ max_new_tokens=32
133
+ ):
134
+ df = pd.read_json(data_path, orient='records')
135
+ # df = df.sample(frac=eval_rate).reset_index(drop=True)
136
+ df['prompt'] = df.apply(lambda x: prompter.generate_prompt(
137
+ x['instruction'], x['input']), axis=1)
138
+ tokenizer.padding_side = "left" # Allow batched inference
139
+
140
+ generation_config = GenerationConfig(
141
+ temperature=temperature,
142
+ top_p=top_p,
143
+ top_k=top_k,
144
+ num_beams=num_beams
145
+ )
146
+
147
+ outputs = []
148
+ total = 0
149
+ total_step = math.ceil(len(df) / batch_size)
150
+ pbar = tqdm(total=total_step, unit='batch')
151
+ # 计算准确率
152
+ with torch.no_grad():
153
+ for i in range(total_step):
154
+ batch = df.iloc[i*batch_size:(i+1)*batch_size]
155
+ inputs = tokenizer(batch['prompt'].tolist(), return_tensors="pt", padding=True)[
156
+ 'input_ids'].to(device)
157
+
158
+ generation_outputs = model.generate(
159
+ input_ids=inputs,
160
+ generation_config=generation_config,
161
+ max_new_tokens=max_new_tokens,
162
+ pad_token_id=tokenizer.pad_token_id
163
+ )
164
+
165
+ for g in generation_outputs:
166
+ decoded_item = tokenizer.decode(
167
+ g, skip_special_tokens=True)
168
+ try:
169
+ output = prompter.get_response(decoded_item)
170
+ except:
171
+ output = decoded_item
172
+ outputs.append(output)
173
+ total += 1
174
+
175
+ # 更新进度条
176
+ pbar.set_description(f"Testing: Sample [{total}/{len(df)}] ")
177
+ pbar.update(1)
178
+ df['pred'] = outputs
179
+ df['pred'].to_csv(output_path, index=False)
180
+
181
+ evaluate_by_batch()
182
+
183
+
184
+ if __name__ == "__main__":
185
+ # fire.Fire(main)
186
+ import yaml
187
+ dataset_param = sys.argv[1]
188
+ with open("./configs/evaluate_params.yaml", "r") as stream:
189
+ # try:
190
+ params = yaml.safe_load(stream)
191
+ print('=' * 80)
192
+ print(params[dataset_param])
193
+ print('=' * 80)
194
+
195
+ # fire.Fire(train)
196
+ main(**params[dataset_param])
utils/merge.py ADDED
@@ -0,0 +1,51 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+
3
+ import torch
4
+ import transformers
5
+ from peft import PeftModel
6
+ from transformers import LlamaForCausalLM, LlamaTokenizer # noqa: F402
7
+
8
+ BASE_MODEL = os.environ.get("BASE_MODEL", None)
9
+ assert (
10
+ BASE_MODEL
11
+ ), "Please specify a value for BASE_MODEL environment variable, e.g. `export BASE_MODEL=huggyllama/llama-7b`" # noqa: E501
12
+
13
+ tokenizer = LlamaTokenizer.from_pretrained(BASE_MODEL)
14
+
15
+ base_model = LlamaForCausalLM.from_pretrained(
16
+ BASE_MODEL,
17
+ load_in_8bit=False,
18
+ torch_dtype=torch.float16,
19
+ device_map={"": "cpu"},
20
+ )
21
+
22
+ first_weight = base_model.model.layers[0].self_attn.q_proj.weight
23
+ first_weight_old = first_weight.clone()
24
+
25
+ lora_model = PeftModel.from_pretrained(
26
+ base_model,
27
+ "../outputs/lora-llama-clm-e2",
28
+ device_map={"": "cpu"},
29
+ torch_dtype=torch.float16,
30
+ )
31
+
32
+ lora_weight = lora_model.base_model.model.model.layers[0].self_attn.q_proj.weight
33
+
34
+ assert torch.allclose(first_weight_old, first_weight)
35
+
36
+ # merge weights - new merging method from peft
37
+ lora_model = lora_model.merge_and_unload()
38
+
39
+ lora_model.train(False)
40
+
41
+ # did we do anything?
42
+ assert not torch.allclose(first_weight_old, first_weight)
43
+
44
+ lora_model_sd = lora_model.state_dict()
45
+ deloreanized_sd = {
46
+ k.replace("base_model.model.", ""): v
47
+ for k, v in lora_model_sd.items()
48
+ if "lora" not in k
49
+ }
50
+
51
+ LlamaForCausalLM.save_pretrained(base_model, '../models/legal-base-7b', state_dict=deloreanized_sd, max_shard_size="400MB")
utils/prompter.py ADDED
@@ -0,0 +1,51 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """
2
+ A dedicated helper to manage templates and prompt building.
3
+ """
4
+
5
+ import json
6
+ import os.path as osp
7
+ from typing import Union
8
+
9
+
10
+ class Prompter(object):
11
+ __slots__ = ("template", "_verbose")
12
+
13
+ def __init__(self, template_name: str = "", verbose: bool = False):
14
+ self._verbose = verbose
15
+ if not template_name:
16
+ # Enforce the default here, so the constructor can be called with '' and will not break.
17
+ template_name = "alpaca"
18
+ file_name = osp.join("templates", f"{template_name}.json")
19
+ if not osp.exists(file_name):
20
+ raise ValueError(f"Can't read {file_name}")
21
+ with open(file_name) as fp:
22
+ self.template = json.load(fp)
23
+ if self._verbose:
24
+ print(
25
+ f"Using prompt template {template_name}: {self.template['description']}"
26
+ )
27
+
28
+ def generate_prompt(
29
+ self,
30
+ instruction: str,
31
+ input: Union[None, str] = None,
32
+ label: Union[None, str] = None,
33
+ ) -> str:
34
+ # returns the full prompt from instruction and optional input
35
+ # if a label (=response, =output) is provided, it's also appended.
36
+ if input:
37
+ res = self.template["prompt_input"].format(
38
+ instruction=instruction, input=input
39
+ )
40
+ else:
41
+ res = self.template["prompt_no_input"].format(
42
+ instruction=instruction
43
+ )
44
+ if label:
45
+ res = f"{res}{label}"
46
+ if self._verbose:
47
+ print(res)
48
+ return res
49
+
50
+ def get_response(self, output: str) -> str:
51
+ return output.split(self.template["response_split"])[1].strip()
webui.py ADDED
@@ -0,0 +1,211 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import sys
3
+
4
+ import fire
5
+ import gradio as gr
6
+ import torch
7
+ import transformers
8
+ from peft import PeftModel
9
+ from transformers import GenerationConfig, LlamaForCausalLM, LlamaTokenizer, AutoModel, AutoTokenizer, AutoModelForCausalLM
10
+
11
+ from utils.callbacks import Iteratorize, Stream
12
+ from utils.prompter import Prompter
13
+
14
+ if torch.cuda.is_available():
15
+ device = "cuda"
16
+ else:
17
+ device = "cpu"
18
+
19
+ try:
20
+ if torch.backends.mps.is_available():
21
+ device = "mps"
22
+ except:
23
+ pass
24
+
25
+
26
+ def main(
27
+ load_8bit: bool = False,
28
+ base_model: str = "huggyllama/llama-7b",
29
+ lora_weights: str = "entity303/lawgpt-lora-7b-v2",
30
+ prompt_template: str = "", # The prompt template to use, will default to alpaca.
31
+ server_name: str = "0.0.0.0", # Allows to listen on all interfaces by providing '0.
32
+ share_gradio: bool = True,
33
+ ):
34
+ base_model = base_model or os.environ.get("BASE_MODEL", "")
35
+ assert (
36
+ base_model
37
+ ), "Please specify a --base_model, e.g. --base_model='huggyllama/llama-7b'"
38
+
39
+ prompter = Prompter(prompt_template)
40
+ tokenizer = LlamaTokenizer.from_pretrained(base_model)
41
+ if device == "cuda":
42
+ model = LlamaForCausalLM.from_pretrained(
43
+ base_model,
44
+ load_in_8bit=load_8bit,
45
+ torch_dtype=torch.float16,
46
+ device_map="auto",
47
+ )
48
+ try:
49
+ model = PeftModel.from_pretrained(
50
+ model,
51
+ lora_weights,
52
+ torch_dtype=torch.float16,
53
+ )
54
+ except:
55
+ print("*"*50, "\n Attention! No Lora Weights \n", "*"*50)
56
+ elif device == "mps":
57
+ model = LlamaForCausalLM.from_pretrained(
58
+ base_model,
59
+ device_map={"": device},
60
+ torch_dtype=torch.float16,
61
+ )
62
+ try:
63
+ model = PeftModel.from_pretrained(
64
+ model,
65
+ lora_weights,
66
+ device_map={"": device},
67
+ torch_dtype=torch.float16,
68
+ )
69
+ except:
70
+ print("*"*50, "\n Attention! No Lora Weights \n", "*"*50)
71
+ else:
72
+ model = LlamaForCausalLM.from_pretrained(
73
+ base_model, device_map={"": device}, low_cpu_mem_usage=True
74
+ )
75
+ try:
76
+ model = PeftModel.from_pretrained(
77
+ model,
78
+ lora_weights,
79
+ device_map={"": device},
80
+ )
81
+ except:
82
+ print("*"*50, "\n Attention! No Lora Weights \n", "*"*50)
83
+
84
+ # unwind broken decapoda-research config
85
+ model.config.pad_token_id = tokenizer.pad_token_id = 0 # unk
86
+ model.config.bos_token_id = 1
87
+ model.config.eos_token_id = 2
88
+
89
+ if not load_8bit:
90
+ model.half() # seems to fix bugs for some users.
91
+
92
+ model.eval()
93
+ if torch.__version__ >= "2" and sys.platform != "win32":
94
+ model = torch.compile(model)
95
+
96
+ def evaluate(
97
+ instruction,
98
+ # input=None,
99
+ temperature=0.1,
100
+ top_p=0.75,
101
+ top_k=40,
102
+ num_beams=4,
103
+ max_new_tokens=128,
104
+ stream_output=False,
105
+ **kwargs,
106
+ ):
107
+ input=None
108
+ prompt = prompter.generate_prompt(instruction, input)
109
+ inputs = tokenizer(prompt, return_tensors="pt")
110
+ input_ids = inputs["input_ids"].to(device)
111
+ generation_config = GenerationConfig(
112
+ temperature=temperature,
113
+ top_p=top_p,
114
+ top_k=top_k,
115
+ num_beams=num_beams,
116
+ **kwargs,
117
+ )
118
+
119
+ generate_params = {
120
+ "input_ids": input_ids,
121
+ "generation_config": generation_config,
122
+ "return_dict_in_generate": True,
123
+ "output_scores": True,
124
+ "max_new_tokens": max_new_tokens,
125
+ }
126
+
127
+ if stream_output:
128
+ # Stream the reply 1 token at a time.
129
+ # This is based on the trick of using 'stopping_criteria' to create an iterator,
130
+ # from https://github.com/oobabooga/text-generation-webui/blob/ad37f396fc8bcbab90e11ecf17c56c97bfbd4a9c/modules/text_generation.py#L216-L243.
131
+
132
+ def generate_with_callback(callback=None, **kwargs):
133
+ kwargs.setdefault(
134
+ "stopping_criteria", transformers.StoppingCriteriaList()
135
+ )
136
+ kwargs["stopping_criteria"].append(
137
+ Stream(callback_func=callback)
138
+ )
139
+ with torch.no_grad():
140
+ model.generate(**kwargs)
141
+
142
+ def generate_with_streaming(**kwargs):
143
+ return Iteratorize(
144
+ generate_with_callback, kwargs, callback=None
145
+ )
146
+
147
+ with generate_with_streaming(**generate_params) as generator:
148
+ for output in generator:
149
+ # new_tokens = len(output) - len(input_ids[0])
150
+ decoded_output = tokenizer.decode(output)
151
+
152
+ if output[-1] in [tokenizer.eos_token_id]:
153
+ break
154
+
155
+ yield prompter.get_response(decoded_output)
156
+ print(decoded_output)
157
+ return # early return for stream_output
158
+
159
+ # Without streaming
160
+ with torch.no_grad():
161
+ generation_output = model.generate(
162
+ input_ids=input_ids,
163
+ generation_config=generation_config,
164
+ return_dict_in_generate=True,
165
+ output_scores=True,
166
+ max_new_tokens=max_new_tokens,
167
+ )
168
+ s = generation_output.sequences[0]
169
+ output = tokenizer.decode(s)
170
+ print(output)
171
+ yield prompter.get_response(output)
172
+
173
+ gr.Interface(
174
+ fn=evaluate,
175
+ inputs=[
176
+ gr.components.Textbox(
177
+ lines=2,
178
+ label="Instruction",
179
+ placeholder="此处输入法律相关问题",
180
+ ),
181
+ # gr.components.Textbox(lines=2, label="Input", placeholder="none"),
182
+ gr.components.Slider(
183
+ minimum=0, maximum=1, value=0.1, label="Temperature"
184
+ ),
185
+ gr.components.Slider(
186
+ minimum=0, maximum=1, value=0.75, label="Top p"
187
+ ),
188
+ gr.components.Slider(
189
+ minimum=0, maximum=100, step=1, value=40, label="Top k"
190
+ ),
191
+ gr.components.Slider(
192
+ minimum=1, maximum=4, step=1, value=1, label="Beams"
193
+ ),
194
+ gr.components.Slider(
195
+ minimum=1, maximum=2000, step=1, value=256, label="Max tokens"
196
+ ),
197
+ gr.components.Checkbox(label="Stream output", value=True),
198
+ ],
199
+ outputs=[
200
+ gr.components.Textbox(
201
+ lines=8,
202
+ label="Output",
203
+ )
204
+ ],
205
+ title="🦙🌲 LaWGPT",
206
+ description="",
207
+ ).queue().launch(server_name="0.0.0.0", share=share_gradio)
208
+
209
+
210
+ if __name__ == "__main__":
211
+ fire.Fire(main)