Spaces:
Sleeping
Sleeping
File size: 8,090 Bytes
d93b84f 0695d3a d93b84f 3381189 ecbfde3 3381189 ecbfde3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 |
from huggingface_hub import hf_hub_download
# filepath = hf_hub_download(
# repo_id="Egrt/Luuuu", filename="GDAL-3.4.1-cp38-cp38-manylinux_2_5_x86_64.whl")
# import os
# os.system('pip install {}'.format(filepath))
import os,glob,h5py,time
import gradio as gr
from PIL import Image
import numpy as np
from osgeo import gdal
from matplotlib import pyplot as plt
from tqdm import tqdm
token = os.environ['HUB_TOKEN']
loc =hf_hub_download(repo_id="JunchuanYu/file_for_rs-tile-creator", filename="utils.py",repo_type="dataset",local_dir='.',token=token)
sys.path.append(loc)
from utils import *
title=(""" # <p align="center"> Remote Sensing Tile Dataset Creator 🛰️ <b>
### <p align="center"> yujunchuan ([email protected])<b>""")
with gr.Blocks(theme=gr.themes.Soft(),css="footer {visibility: hidden}") as demo:
# dtype=gr.State(value=[])
fullarray=gr.State(value=None)
cropdata=gr.State(value=None)
boriginal_img=gr.State(value=None)
boriginal_lab=gr.State(value=None)
gr.Markdown(title)
with gr.Tab("Basic Mode"):
with gr.Row():
with gr.Column(scale=50):
# input_img=gr.Textbox(label='Input image path' )
# input_lab=gr.Textbox(label='Input mask path')
input_img=gr.File(label='Input image path',height=100,scale=2)
outpath=gr.Textbox(label='Output path',lines=2)
with gr.Column(scale=50):
with gr.Row():
datatype=gr.Radio(['Tiff','Hdf5'],interactive=True, type="value",value='Tiff',label='Data type')
with gr.Row():
# with gr.Column():
check_button = gr.Button("Check file")
with gr.Row():
# with gr.Column():
result=gr.Textbox(label='Logging info',lines=2,show_label=True)
with gr.Row(equal_height=True):
with gr.Column():
with gr.Row(equal_height=True):
with gr.Column(scale=50):
with gr.Row():
with gr.Column(scale=50):
clipmode=gr.Radio(['Sequential','Random'],interactive=True, type="value",value='Sequential',label='Clip mode')
with gr.Column(scale=50):
npatch=gr.Number(label="N patches",value=50,precision=0,interactive=True)
with gr.Row():
thresh = gr.Slider(minimum=0, maximum=1, value=0, step=0.1, interactive=True, label="threshhold")
with gr.Column(scale=50):
with gr.Row(equal_height=True):
with gr.Column(scale=50):
cropsize = gr.Number(label="Crop size",value=256,precision=0,interactive=True)
run_button = gr.Button("Start",size='lg',scale=2,variant="primary")
with gr.Column(scale=50):
stride = gr.Number(label="Stride",value=256,precision=0,interactive=True)
# with gr.Row(equal_height=True):
save_button = gr.Button("Save",size='lg',scale=2,variant="primary")
with gr.Row(equal_height=True):
with gr.Column(scale=50):
original_img=gr.Image(label='Input image')
with gr.Column(scale=50):
original_lab=gr.Image(label='Input mask')
with gr.Column(scale=100):
show_pathes=gr.Image(label='Image tile')
with gr.Row(equal_height=True):
with gr.Column(scale=1):
start=gr.Number(label='Start number',value=0,precision=0,interactive=True)
with gr.Column(scale=1):
dstride=gr.Number(label='Show N files',value=10,precision=0,interactive=True)
with gr.Column(scale=2):
showtile=gr.Button('Show tile',size='lg',variant="primary")
tilecheck=gr.Button('Next tile',size='lg',variant="secondary")
with gr.Row():
example = gr.Examples(
examples=[['./image/128_d4_32.tif','Tiff']],
fn=read_img_file,
inputs=[input_img,datatype],
outputs=[fullarray,original_img,original_lab],
cache_examples=False)
## BATCH MODE
with gr.Tab("Batch"):
with gr.Row(equal_height=True):
with gr.Column(scale=50):
binput_img=gr.File(label='Input image path',height=100,scale=3,file_count='multiple')
# with gr.Row():
with gr.Column(scale=50):
with gr.Row():
with gr.Column():
bdatatype=gr.Radio(['Tiff','Hdf5'],interactive=True, type="value",value='Tiff',label='Data type')
with gr.Column(scale=20):
boutpath=gr.Textbox(label='Output path',lines=1)
with gr.Row():
bcheck_button = gr.Button("Check file")
# with gr.Row():
with gr.Row(equal_height=True):
with gr.Column():
with gr.Row(equal_height=True):
with gr.Column(scale=50):
with gr.Row():
with gr.Column(scale=50):
bclipmode=gr.Radio(['Sequential','Random'],interactive=True, type="value",value='Sequential',label='Clip mode')
with gr.Column(scale=50):
bnpatch=gr.Number(label="N patches",value=50,precision=0,interactive=True)
with gr.Row():
bthresh = gr.Slider(minimum=0, maximum=1, value=0, step=0.1, interactive=True, label="threshhold")
with gr.Column(scale=50):
with gr.Row():
with gr.Column(scale=50):
bcropsize = gr.Number(label="Crop size",value=256,precision=0,interactive=True)
with gr.Column(scale=50):
bstride = gr.Number(label="Stride",value=256,precision=0,interactive=True)
with gr.Row():
brun_button = gr.Button("Start",size='lg',scale=2,variant="primary")
with gr.Row():
with gr.Column(scale=50):
boriginal_img=gr.Image(label='Input image')
with gr.Column(scale=50):
boriginal_lab=gr.Image(label='Input mask')
with gr.Column(scale=100):
bresult=gr.Textbox(label='Logging info',lines=8,show_label=True)
with gr.Row():
example = gr.Examples(
examples=[[glob.glob('./image/*.tif'),'Tiff','./image']],
fn=batch_check_file,
inputs=[binput_img,bdatatype,boutpath],
outputs=[bresult],
cache_examples=False)
input_img.change(read_img_file,[input_img,datatype],[fullarray,original_img,original_lab])
check_button.click(check_file,[fullarray,outpath],result)
run_button.click(data_crop,[fullarray,cropsize,stride,clipmode,npatch,thresh],[cropdata,result])
save_button.click(save_tile,[cropdata,outpath],result)
showtile.click(show_data,cropdata,[show_pathes,start])
tilecheck.click(show_data,[cropdata,start,dstride],[show_pathes,start])
bcheck_button.click(batch_check_file,[binput_img,bdatatype,boutpath],bresult)
brun_button.click(batch_clip_data,[binput_img,bdatatype,bcropsize,bstride,bclipmode,npatch,bthresh,boutpath],[boriginal_img,boriginal_lab,bresult],show_progress=True)
demo.queue()
demo.launch(debug=False,show_api=False,show_tips=False)
|