Spaces:
Runtime error
Runtime error
JunchuanYu
commited on
Update app.py
Browse files
app.py
CHANGED
@@ -1,29 +1,29 @@
|
|
1 |
-
import gradio as gr
|
2 |
-
import joblib
|
3 |
-
import numpy as np
|
4 |
-
|
5 |
-
model=joblib.load('./data/random_forest_model.pkl')
|
6 |
-
# 构建预测函数
|
7 |
-
def predict_minist(image):
|
8 |
-
# print(normalized.shape)
|
9 |
-
normalized =image['composite'][:,:,-1]
|
10 |
-
flattened = normalized.reshape(1, 784)
|
11 |
-
prediction = model.predict(flattened)
|
12 |
-
print(normalized.shape,np.max(normalized),prediction[0])
|
13 |
-
|
14 |
-
return prediction[0]
|
15 |
-
with gr.Blocks() as demo:
|
16 |
-
gr.HTML("""
|
17 |
-
<center>
|
18 |
-
<h1> andwritten Digit Recognition</h1>
|
19 |
-
<b> [email protected] 📧<b>
|
20 |
-
</center>
|
21 |
-
""")
|
22 |
-
gr.Markdown("Draw a digit and the model will predict the digit. Please draw the digit in the center of the canvas")
|
23 |
-
with gr.Row():
|
24 |
-
outtext=gr.Textbox(label="Prediciton")
|
25 |
-
with gr.Row():
|
26 |
-
inputimg=gr.ImageMask(image_mode="RGBA",crop_size=(28,28))
|
27 |
-
|
28 |
-
inputimg.change(predict_minist,inputimg,outtext)
|
29 |
-
demo.launch()
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import joblib
|
3 |
+
import numpy as np
|
4 |
+
|
5 |
+
model=joblib.load('./data/random_forest_model.pkl')
|
6 |
+
# 构建预测函数
|
7 |
+
def predict_minist(image):
|
8 |
+
# print(normalized.shape)
|
9 |
+
normalized =image['composite'][:,:,-1]
|
10 |
+
flattened = normalized.reshape(1, 784)
|
11 |
+
prediction = model.predict(flattened)
|
12 |
+
print(normalized.shape,np.max(normalized),prediction[0])
|
13 |
+
|
14 |
+
return prediction[0]
|
15 |
+
with gr.Blocks(theme="soft") as demo:
|
16 |
+
gr.HTML("""
|
17 |
+
<center>
|
18 |
+
<h1> andwritten Digit Recognition</h1>
|
19 |
+
<b> [email protected] 📧<b>
|
20 |
+
</center>
|
21 |
+
""")
|
22 |
+
gr.Markdown("Draw a digit and the model will predict the digit. Please draw the digit in the center of the canvas")
|
23 |
+
with gr.Row():
|
24 |
+
outtext=gr.Textbox(label="Prediciton")
|
25 |
+
with gr.Row():
|
26 |
+
inputimg=gr.ImageMask(image_mode="RGBA",crop_size=(28,28))
|
27 |
+
|
28 |
+
inputimg.change(predict_minist,inputimg,outtext)
|
29 |
+
demo.launch()
|