File size: 4,248 Bytes
0d7e8be
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
import torch
from torch.nn import functional as F
from PIL import Image


### from https://huggingface.co/transformers/v3.2.0/_modules/transformers/generation_utils.html
def top_k_top_p_filtering(

    logits,

    top_k: int = 0,

    top_p: float = 1.0,

    filter_value: float = -float("Inf"),

    min_tokens_to_keep: int = 1,

    ):
    """Filter a distribution of logits using top-k and/or nucleus (top-p) filtering

    Args:

        logits: logits distribution shape (batch size, vocabulary size)

        if top_k > 0: keep only top k tokens with highest probability (top-k filtering).

        if top_p < 1.0: keep the top tokens with cumulative probability >= top_p (nucleus filtering).

            Nucleus filtering is described in Holtzman et al. (http://arxiv.org/abs/1904.09751)

        Make sure we keep at least min_tokens_to_keep per batch example in the output

    From: https://gist.github.com/thomwolf/1a5a29f6962089e871b94cbd09daf317

    """

    logits[:,:256000]=filter_value
    if top_k > 0:
        top_k = min(max(top_k, min_tokens_to_keep), logits.size(-1))  # Safety check
        # Remove all tokens with a probability less than the last token of the top-k
        
        indices_to_remove = logits < torch.topk(logits, top_k)[0][..., -1, None]
        logits[indices_to_remove] = filter_value

    if top_p < 1.0:
        sorted_logits, sorted_indices = torch.sort(logits, descending=True)
        cumulative_probs = torch.cumsum(F.softmax(sorted_logits, dim=-1), dim=-1)

        # Remove tokens with cumulative probability above the threshold (token with 0 are kept)
        sorted_indices_to_remove = cumulative_probs > top_p
        if min_tokens_to_keep > 1:
            # Keep at least min_tokens_to_keep (set to min_tokens_to_keep-1 because we add the first one below)
            sorted_indices_to_remove[..., :min_tokens_to_keep] = 0
        # Shift the indices to the right to keep also the first token above the threshold
        sorted_indices_to_remove[..., 1:] = sorted_indices_to_remove[..., :-1].clone()
        sorted_indices_to_remove[..., 0] = 0

        # scatter sorted tensors to original indexing
        indices_to_remove = sorted_indices_to_remove.scatter(1, sorted_indices, sorted_indices_to_remove)
        logits[indices_to_remove] = filter_value
    # import pdb;pdb.set_trace()
    return logits


def sample(logits, temperature: float=1.0, top_k: int=0, top_p: float=1.0, sample_logits=True):        
    logits = logits[:, -1, :] / max(temperature, 1e-5)
    if top_k > 0 or top_p < 1.0:
        logits = top_k_top_p_filtering(logits, top_k=top_k, top_p=top_p)
    probs = F.softmax(logits, dim=-1)
    if sample_logits:
        idx = torch.multinomial(probs, num_samples=1)
    else:
        _, idx = torch.topk(probs, k=1, dim=-1)
    return idx, probs


def expand2square(pil_img, background_color):
    width, height = pil_img.size
    if width == height:
        return pil_img
    elif width > height:
        result = Image.new(pil_img.mode, (width, width), background_color)
        result.paste(pil_img, (0, (width - height) // 2))
        return result
    else:
        result = Image.new(pil_img.mode, (height, height), background_color)
        result.paste(pil_img, ((height - width) // 2, 0))
        return result
    
    

def tokenizer_image_token(prompt, tokenizer, image_token_index=-200, return_tensors=None):
    prompt_chunks = [tokenizer(chunk).input_ids for chunk in prompt.split('<image>')]

    def insert_separator(X, sep):
        return [ele for sublist in zip(X, [sep]*len(X)) for ele in sublist][:-1]

    input_ids = []
    offset = 0
    if len(prompt_chunks) > 0 and len(prompt_chunks[0]) > 0 and prompt_chunks[0][0] == tokenizer.bos_token_id:
        offset = 1
        input_ids.append(prompt_chunks[0][0])

    for x in insert_separator(prompt_chunks, [image_token_index] * (offset + 1)):
        input_ids.extend(x[offset:])

    if return_tensors is not None:
        if return_tensors == 'pt':
            return torch.tensor(input_ids, dtype=torch.long)
        raise ValueError(f'Unsupported tensor type: {return_tensors}')
    return input_ids