File size: 14,895 Bytes
5e1b738
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
# coding=utf-8
# Copyright 2022 The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Feature extractor class for Whisper
"""

from typing import List, Optional, Union

import numpy as np

from ... import is_torch_available
from ...audio_utils import mel_filter_bank, spectrogram, window_function
from ...feature_extraction_sequence_utils import SequenceFeatureExtractor
from ...feature_extraction_utils import BatchFeature
from ...utils import TensorType, logging


if is_torch_available():
    import torch

logger = logging.get_logger(__name__)


class WhisperFeatureExtractor(SequenceFeatureExtractor):
    r"""
    Constructs a Whisper feature extractor.

    This feature extractor inherits from [`~feature_extraction_sequence_utils.SequenceFeatureExtractor`] which contains
    most of the main methods. Users should refer to this superclass for more information regarding those methods.

    This class extracts mel-filter bank features from raw speech using a custom numpy implementation of the `Short Time
    Fourier Transform` which should match pytorch's `torch.stft` equivalent.

    Args:
        feature_size (`int`, *optional*, defaults to 80):
            The feature dimension of the extracted features.
        sampling_rate (`int`, *optional*, defaults to 16000):
            The sampling rate at which the audio files should be digitalized expressed in hertz (Hz).
        hop_length (`int`, *optional*, defaults to 160):
            Length of the overlaping windows for the STFT used to obtain the Mel Frequency coefficients.
        chunk_length (`int`, *optional*, defaults to 30):
            The maximum number of chuncks of `sampling_rate` samples used to trim and pad longer or shorter audio
            sequences.
        n_fft (`int`, *optional*, defaults to 400):
            Size of the Fourier transform.
        padding_value (`float`, *optional*, defaults to 0.0):
            Padding value used to pad the audio. Should correspond to silences.
    """

    model_input_names = ["input_features"]

    def __init__(
        self,
        feature_size=80,
        sampling_rate=16000,
        hop_length=160,
        chunk_length=30,
        n_fft=400,
        padding_value=0.0,
        return_attention_mask=False,  # pad inputs to max length with silence token (zero) and no attention mask
        **kwargs,
    ):
        super().__init__(
            feature_size=feature_size,
            sampling_rate=sampling_rate,
            padding_value=padding_value,
            return_attention_mask=return_attention_mask,
            **kwargs,
        )
        self.n_fft = n_fft
        self.hop_length = hop_length
        self.chunk_length = chunk_length
        self.n_samples = chunk_length * sampling_rate
        self.nb_max_frames = self.n_samples // hop_length
        self.sampling_rate = sampling_rate
        self.mel_filters = mel_filter_bank(
            num_frequency_bins=1 + n_fft // 2,
            num_mel_filters=feature_size,
            min_frequency=0.0,
            max_frequency=8000.0,
            sampling_rate=sampling_rate,
            norm="slaney",
            mel_scale="slaney",
        )

    def _np_extract_fbank_features(self, waveform_batch: np.array, device: str) -> np.ndarray:
        """
        Compute the log-mel spectrogram of the provided audio, gives similar results to Whisper's original torch
        implementation with 1e-5 tolerance.
        """
        if device != "cpu":
            raise ValueError(
                f"Got device `{device}` for feature extraction, but feature extraction on CUDA accelerator "
                "devices requires torch, which is not installed. Either set `device='cpu'`, or "
                "install torch according to the official instructions: https://pytorch.org/get-started/locally/"
            )
        log_spec_batch = []
        for waveform in waveform_batch:
            log_spec = spectrogram(
                waveform,
                window_function(self.n_fft, "hann"),
                frame_length=self.n_fft,
                hop_length=self.hop_length,
                power=2.0,
                mel_filters=self.mel_filters,
                log_mel="log10",
            )
            log_spec = log_spec[:, :-1]
            log_spec = np.maximum(log_spec, log_spec.max() - 8.0)
            log_spec = (log_spec + 4.0) / 4.0
            log_spec_batch.append(log_spec)
        log_spec_batch = np.array(log_spec_batch)
        return log_spec_batch

    def _torch_extract_fbank_features(self, waveform: np.array, device: str = "cpu") -> np.ndarray:
        """
        Compute the log-mel spectrogram of the audio using PyTorch's GPU-accelerated STFT implementation with batching,
        yielding results similar to cpu computing with 1e-5 tolerance.
        """
        waveform = torch.from_numpy(waveform).type(torch.float32)

        window = torch.hann_window(self.n_fft)
        if device != "cpu":
            waveform = waveform.to(device)
            window = window.to(device)
        stft = torch.stft(waveform, self.n_fft, self.hop_length, window=window, return_complex=True)
        magnitudes = stft[..., :-1].abs() ** 2

        mel_filters = torch.from_numpy(self.mel_filters).type(torch.float32)
        if device != "cpu":
            mel_filters = mel_filters.to(device)
        mel_spec = mel_filters.T @ magnitudes

        log_spec = torch.clamp(mel_spec, min=1e-10).log10()
        if waveform.dim() == 2:
            max_val = log_spec.max(dim=2, keepdim=True)[0].max(dim=1, keepdim=True)[0]
            log_spec = torch.maximum(log_spec, max_val - 8.0)
        else:
            log_spec = torch.maximum(log_spec, log_spec.max() - 8.0)
        log_spec = (log_spec + 4.0) / 4.0
        if device != "cpu":
            log_spec = log_spec.detach().cpu()
        return log_spec.numpy()

    @staticmethod
    # Copied from transformers.models.wav2vec2.feature_extraction_wav2vec2.Wav2Vec2FeatureExtractor.zero_mean_unit_var_norm
    def zero_mean_unit_var_norm(
        input_values: List[np.ndarray], attention_mask: List[np.ndarray], padding_value: float = 0.0
    ) -> List[np.ndarray]:
        """
        Every array in the list is normalized to have zero mean and unit variance
        """
        if attention_mask is not None:
            attention_mask = np.array(attention_mask, np.int32)
            normed_input_values = []

            for vector, length in zip(input_values, attention_mask.sum(-1)):
                normed_slice = (vector - vector[:length].mean()) / np.sqrt(vector[:length].var() + 1e-7)
                if length < normed_slice.shape[0]:
                    normed_slice[length:] = padding_value

                normed_input_values.append(normed_slice)
        else:
            normed_input_values = [(x - x.mean()) / np.sqrt(x.var() + 1e-7) for x in input_values]

        return normed_input_values

    def __call__(
        self,
        raw_speech: Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]],
        truncation: bool = True,
        pad_to_multiple_of: Optional[int] = None,
        return_tensors: Optional[Union[str, TensorType]] = None,
        return_attention_mask: Optional[bool] = None,
        padding: Optional[str] = "max_length",
        max_length: Optional[int] = None,
        sampling_rate: Optional[int] = None,
        do_normalize: Optional[bool] = None,
        device: Optional[str] = "cpu",
        return_token_timestamps: Optional[bool] = None,
        **kwargs,
    ) -> BatchFeature:
        """
        Main method to featurize and prepare for the model one or several sequence(s). Implementation uses PyTorch for
        the STFT computation if available, otherwise a slower NumPy based one.

        Args:
            raw_speech (`np.ndarray`, `List[float]`, `List[np.ndarray]`, `List[List[float]]`):
                The sequence or batch of sequences to be padded. Each sequence can be a numpy array, a list of float
                values, a list of numpy arrays or a list of list of float values. Must be mono channel audio, not
                stereo, i.e. single float per timestep.
            truncation (`bool`, *optional*, default to `True`):
                Activates truncation to cut input sequences longer than *max_length* to *max_length*.
            pad_to_multiple_of (`int`, *optional*, defaults to None):
                If set will pad the sequence to a multiple of the provided value.

                This is especially useful to enable the use of Tensor Cores on NVIDIA hardware with compute capability
                `>= 7.5` (Volta), or on TPUs which benefit from having sequence lengths be a multiple of 128.
            return_attention_mask (`bool`, *optional*):
                Whether to return the attention mask. If left to the default, will return the attention mask according
                to the specific feature_extractor's default.

                [What are attention masks?](../glossary#attention-mask)

                <Tip>

                For Whisper models, `attention_mask` should always be passed for batched inference, to avoid subtle
                bugs.

                </Tip>

            return_tensors (`str` or [`~utils.TensorType`], *optional*):
                If set, will return tensors instead of list of python integers. Acceptable values are:

                - `'tf'`: Return TensorFlow `tf.constant` objects.
                - `'pt'`: Return PyTorch `torch.Tensor` objects.
                - `'np'`: Return Numpy `np.ndarray` objects.
            sampling_rate (`int`, *optional*):
                The sampling rate at which the `raw_speech` input was sampled. It is strongly recommended to pass
                `sampling_rate` at the forward call to prevent silent errors and allow automatic speech recognition
                pipeline.
            padding_value (`float`, *optional*, defaults to 0.0):
                The value that is used to fill the padding values / vectors.
            do_normalize (`bool`, *optional*, defaults to `False`):
                Whether or not to zero-mean unit-variance normalize the input. Normalizing can help to significantly
                improve the performance of the model.
            device (`str`, *optional*, defaults to `'cpu'`):
                Specifies the device for computation of the log-mel spectrogram of audio signals in the
                `_torch_extract_fbank_features` method. (e.g., "cpu", "cuda")
            return_token_timestamps (`bool`, *optional*, defaults to `None`):
                Whether or not to return the number of frames of the input raw_speech.
                These num_frames can be used by the model to compute word level timestamps.
        """

        if sampling_rate is not None:
            if sampling_rate != self.sampling_rate:
                raise ValueError(
                    f"The model corresponding to this feature extractor: {self.__class__.__name__} was trained using a"
                    f" sampling rate of {self.sampling_rate}. Please make sure that the provided `raw_speech` input"
                    f" was sampled with {self.sampling_rate} and not {sampling_rate}."
                )
        else:
            logger.warning(
                "It is strongly recommended to pass the `sampling_rate` argument to this function. "
                "Failing to do so can result in silent errors that might be hard to debug."
            )

        is_batched_numpy = isinstance(raw_speech, np.ndarray) and len(raw_speech.shape) > 1
        if is_batched_numpy and len(raw_speech.shape) > 2:
            raise ValueError(f"Only mono-channel audio is supported for input to {self}")
        is_batched = is_batched_numpy or (
            isinstance(raw_speech, (list, tuple)) and (isinstance(raw_speech[0], (np.ndarray, tuple, list)))
        )

        if is_batched:
            raw_speech = [np.asarray([speech], dtype=np.float32).T for speech in raw_speech]
        elif not is_batched and not isinstance(raw_speech, np.ndarray):
            raw_speech = np.asarray(raw_speech, dtype=np.float32)
        elif isinstance(raw_speech, np.ndarray) and raw_speech.dtype is np.dtype(np.float64):
            raw_speech = raw_speech.astype(np.float32)

        # always return batch
        if not is_batched:
            raw_speech = [np.asarray([raw_speech]).T]

        batched_speech = BatchFeature({"input_features": raw_speech})

        # convert into correct format for padding

        padded_inputs = self.pad(
            batched_speech,
            padding=padding,
            max_length=max_length if max_length else self.n_samples,
            truncation=truncation,
            pad_to_multiple_of=pad_to_multiple_of,
            return_attention_mask=return_attention_mask or do_normalize,
        )

        # zero-mean and unit-variance normalization
        if do_normalize:
            padded_inputs["input_features"] = self.zero_mean_unit_var_norm(
                padded_inputs["input_features"],
                attention_mask=padded_inputs["attention_mask"],
                padding_value=self.padding_value,
            )
            padded_inputs["input_features"] = np.stack(padded_inputs["input_features"], axis=0)

        # make sure list is in array format
        input_features = padded_inputs.get("input_features").transpose(2, 0, 1)

        extract_fbank_features = (
            self._torch_extract_fbank_features if is_torch_available() else self._np_extract_fbank_features
        )
        input_features = extract_fbank_features(input_features[0], device)

        if isinstance(input_features[0], List):
            padded_inputs["input_features"] = [np.asarray(feature, dtype=np.float32) for feature in input_features]

        else:
            padded_inputs["input_features"] = input_features

        if return_attention_mask:
            # rescale from sample (48000) to feature (3000)
            padded_inputs["attention_mask"] = padded_inputs["attention_mask"][:, :: self.hop_length]

        if return_token_timestamps is not None:
            padded_inputs["num_frames"] = [len(raw_speech_i) // self.hop_length for raw_speech_i in raw_speech]

        if return_tensors is not None:
            padded_inputs = padded_inputs.convert_to_tensors(return_tensors)

        return padded_inputs