File size: 4,341 Bytes
0cfb4a5
d4fba6d
0dec378
 
6c6a21d
0dec378
0a67e9a
 
a484b84
d4fba6d
6c6a21d
0dec378
1a52ee5
0dec378
d4fba6d
20ffdd2
0dec378
 
1a52ee5
908e25f
 
0dec378
1a52ee5
3c2650c
1a52ee5
 
 
 
 
3d2ee8a
ccd05c2
 
1a52ee5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ccd05c2
 
1a52ee5
908e25f
1a52ee5
 
0cfb4a5
 
1a52ee5
 
 
 
 
 
 
 
 
 
 
 
0cfb4a5
 
1a52ee5
908e25f
79024bb
908e25f
ccd05c2
908e25f
 
 
 
 
1a52ee5
 
 
ccd05c2
289d5f1
b5806de
0dec378
 
1a52ee5
 
 
 
 
d4fba6d
0dec378
908e25f
 
 
 
 
 
 
 
1a52ee5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
import os
import gradio as gr
import numpy as np
import random
from huggingface_hub import AsyncInferenceClient, login
from translatepy import Translator
import requests
import re
import asyncio
from PIL import Image
from gradio_client import Client, handle_file


translator = Translator()
HF_TOKEN = os.environ.get("HF_TOKEN", None)
basemodel = "black-forest-labs/FLUX.1-schnell"
MAX_SEED = np.iinfo(np.int32).max


CSS = "footer {visibility: hidden;}"
JS = "function () {gradioURL = window.location.href;if (!gradioURL.endsWith('?__theme=dark')) {window.location.replace(gradioURL + '?__theme=dark');}}"


def enable_lora(lora_add):
    if not lora_add:
        return basemodel
    else:
        return lora_add


def get_upscale_finegrain(prompt, img_path, upscale_factor):
    client = Client("finegrain/finegrain-image-enhancer")
    result = client.predict(
        input_image=handle_file(img_path),
        prompt=prompt,
        negative_prompt="",
        seed=42,
        upscale_factor=upscale_factor,
        controlnet_scale=0.6,
        controlnet_decay=1,
        condition_scale=6,
        tile_width=112,
        tile_height=144,
        denoise_strength=0.35,
        num_inference_steps=18,
        solver="DDIM",
        api_name="/process"
    )
    return result[1]


async def generate_image(prompt, model, lora_word, width, height, scales, steps, seed):
    if seed == -1:
        seed = random.randint(0, MAX_SEED)
    seed = int(seed)
    text = str(translator.translate(prompt, 'English')) + "," + lora_word
    async with AsyncInferenceClient() as client:
        try:
            image = await client.text_to_image(
                prompt=text,
                height=height,
                width=width,
                guidance_scale=scales,
                num_inference_steps=steps,
                model=model,
            )
        except Exception as e:
            raise gr.Error(f"Error in {e}")
    return image, seed


async def gen(prompt, lora_add, lora_word, width, height, scales, steps, seed, upscale_factor):
    model = enable_lora(lora_add)
    image, seed = await generate_image(prompt, model, lora_word, width, height, scales, steps, seed)
    if upscale_factor != 0:
        upscaled_image = get_upscale_finegrain(prompt, image, upscale_factor)
        combined_image = Image.new('RGB', (image.width + upscaled_image.width, image.height))
        combined_image.paste(image, (0, 0))
        combined_image.paste(upscaled_image, (image.width, 0))
        return combined_image, seed
    else:
        return image, seed


with gr.Blocks(css=CSS, js=JS, theme="Nymbo/Nymbo_Theme") as demo:
    gr.HTML("<h1><center>Flux Lab Light</center></h1>")
    with gr.Row():
        with gr.Column(scale=4):
            with gr.Row():
                img = gr.Image(type="filepath", label='Comparison Image', height=600)
            with gr.Row():
                prompt = gr.Textbox(label='Enter Your Prompt (Multi-Languages)', placeholder="Enter prompt...", scale=6)
                sendBtn = gr.Button(scale=1, variant='primary')
        with gr.Accordion("Advanced Options", open=True):
            with gr.Column(scale=1):
                width = gr.Slider(label="Width", minimum=512, maximum=1280, step=8, value=768)
                height = gr.Slider(label="Height", minimum=512, maximum=1280, step=8, value=1024)
                scales = gr.Slider(label="Guidance", minimum=3.5, maximum=7, step=0.1, value=3.5)
                steps = gr.Slider(label="Steps", minimum=1, maximum=100, step=1, value=24)
            seed = gr.Slider(label="Seeds", minimum=-1, maximum=MAX_SEED, step=1, value=-1)
            lora_add = gr.Textbox(label="Add Flux LoRA", info="Copy the HF LoRA model name here", lines=1, placeholder="Please use Warm status model")
            lora_word = gr.Textbox(label="Add Flux LoRA Trigger Word", info="Add the Trigger Word", lines=1, value="")
            upscale_factor = gr.Radio(label="UpScale Factor", choices=[0, 2, 3, 4], value=0, scale=2)
    gr.on(
        triggers=[prompt.submit, sendBtn.click],
        fn=gen,
        inputs=[
            prompt,
            lora_add,
            lora_word,
            width,
            height,
            scales,
            steps,
            seed,
            upscale_factor
        ],
        outputs=[img, seed]
    )