File size: 4,737 Bytes
0cfb4a5
d4fba6d
0dec378
 
de6051a
0dec378
0a67e9a
 
a484b84
d4fba6d
2fc432b
 
 
1a52ee5
4ec4b86
 
219d097
c5b40c9
e3be785
4ec4b86
 
 
e3be785
 
2fc432b
4ec4b86
 
 
 
 
 
 
 
 
 
 
 
1a52ee5
58b06a7
4ec4b86
58b06a7
2f35681
4ec4b86
 
 
 
 
e3be785
 
58b06a7
e3be785
ba2e19b
4ec4b86
ba2e19b
e3be785
2fc432b
4ec4b86
 
 
 
 
 
 
 
2fc432b
4ec4b86
e3be785
 
 
 
 
 
 
4ec4b86
e3be785
165b2f6
3b4ee8c
4ec4b86
3b4ee8c
4ec4b86
5e03798
 
e5d91cc
58b06a7
 
 
5e03798
 
11a4797
 
5e03798
 
 
4ec4b86
5e03798
 
 
 
 
 
 
 
58b06a7
5e03798
4ec4b86
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
import os
import gradio as gr
import numpy as np
import random
from huggingface_hub import AsyncInferenceClient
from translatepy import Translator
import requests
import re
import asyncio
from PIL import Image
from gradio_client import Client, handle_file
from huggingface_hub import login
from gradio_imageslider import ImageSlider

# Constantes
MAX_SEED = np.iinfo(np.int32).max
HF_TOKEN = os.environ.get("HF_TOKEN")
HF_TOKEN_UPSCALER = os.environ.get("HF_TOKEN_UPSCALER")

# Funciones
def enable_lora(lora_add, basemodel):
    """Habilita o deshabilita el modelo LORA"""
    return basemodel if not lora_add else lora_add

async def generate_image(prompt, model, lora_word, width, height, scales, steps, seed):
    """Genera una imagen a partir de un texto"""
    try:
        if seed == -1:
            seed = random.randint(0, MAX_SEED)
        seed = int(seed)
        text = str(Translator().translate(prompt, 'English')) + "," + lora_word
        client = AsyncInferenceClient()
        image = await client.text_to_image(prompt=text, height=height, width=width, guidance_scale=scales, num_inference_steps=steps, model=model)
        return image, seed
    except Exception as e:
        print(f"Error generating image: {e}")
        return None, None

async def gen(prompt, basemodel, width, height, scales, steps, seed, upscale_factor, process_upscale, lora_model, process_lora):
    """Genera una imagen y la ajusta"""
    model = enable_lora(lora_model, basemodel) if process_lora else basemodel
    image, seed = await generate_image(prompt, model, "", width, height, scales, steps, seed)
    if image is None:
        return [None, None]
    
    image_path = "temp_image.jpg"
    image.save(image_path, format="JPEG")
    
    if process_upscale:
        upscale_image = get_upscale_finegrain(prompt, image_path, upscale_factor)
    else:
        upscale_image = image_path
    
    return [image_path, upscale_image]

def get_upscale_finegrain(prompt, img_path, upscale_factor):
    """Ajusta la imagen"""
    try:
        client = Client("finegrain/finegrain-image-enhancer", hf_token=HF_TOKEN_UPSCALER)
        result = client.predict(input_image=handle_file(img_path), prompt=prompt, negative_prompt="", seed=42, upscale_factor=upscale_factor, controlnet_scale=0.6, controlnet_decay=1, condition_scale=6, tile_width=112, tile_height=144, denoise_strength=0.35, num_inference_steps=18, solver="DDIM", api_name="/process")
        return result[1]
    except Exception as e:
        print(f"Error upscale image: {e}")
        return None

# Interfaz gráfica
css = """
#col-container{
    margin: 0 auto;
    max-width: 1024px;
}
"""

with gr.Blocks(css=css, theme="Nymbo/Nymbo_Theme") as demo:
    with gr.Column(elem_id="col-container"):
        gr.Markdown("Flux Upscaled +LORA")
        with gr.Row():
            with gr.Column(scale=3):
                output_res = ImageSlider(label="Flux / Upscaled")
            with gr.Column(scale=2):
                prompt = gr.Textbox(label="Prompt")
                basemodel_choice = gr.Dropdown(label="Base Model", choices=["black-forest-labs/FLUX.1-schnell", "black-forest-labs/FLUX.1-DEV"], value="black-forest-labs/FLUX.1-schnell")
                lora_model_choice = gr.Dropdown(label="LORA Model", choices=["Shakker-Labs/FLUX.1-dev-LoRA-add-details", "XLabs-AI/flux-RealismLora"], value="XLabs-AI/flux-RealismLora")
                process_lora = gr.Checkbox(label="Process LORA")
                process_upscale = gr.Checkbox(label="Process Upscale")
                upscale_factor = gr.Radio(label="UpScale Factor", choices=[2, 4, 8], value=2)
                
                with gr.Accordion(label="Advanced Options", open=False):
                    width = gr.Slider(label="Width", minimum=512, maximum=1280, step=8, value=1280)
                    height = gr.Slider(label="Height", minimum=512, maximum=1280, step=8, value=768)
                    scales = gr.Slider(label="Guidance", minimum=3.5, maximum=7, step=0.1, value=3.5)
                    steps = gr.Slider(label="Steps", minimum=1, maximum=100, step=1, value=24)
                    seed = gr.Slider(label="Seeds", minimum=-1, maximum=MAX_SEED, step=1, value=-1)
            
                submit_btn = gr.Button("Submit", scale=1)
                submit_btn.click(
                    fn=lambda: None,
                    inputs=None,
                    outputs=[output_res],
                    queue=False
                ).then(
                    fn=gen,
                    inputs=[prompt, basemodel_choice, width, height, scales, steps, seed, upscale_factor, process_upscale, lora_model_choice, process_lora],
                    outputs=[output_res]
                )

demo.launch()