File size: 8,805 Bytes
0cfb4a5
d4fba6d
0dec378
 
de6051a
6b3081a
2fc432b
7440665
2fc432b
7440665
1194f82
4ec4b86
e3be785
1194f82
 
3e3d315
41753f4
1194f82
35fffeb
41753f4
1194f82
7440665
bc9a69a
6b3081a
bc9a69a
e3be785
e9fbff7
 
 
 
 
 
 
3e3d315
 
 
 
9413e8d
 
 
3e3d315
 
e9fbff7
3e3d315
 
 
 
7440665
2fc432b
6bd865c
 
 
bc9a69a
7440665
 
6b3081a
7440665
 
6bd865c
 
 
 
7440665
6bd865c
1a52ee5
7440665
61bff42
6bd865c
e9fbff7
6bd865c
7440665
 
 
 
 
9413e8d
7440665
 
9413e8d
 
7440665
 
 
 
 
6bd865c
7440665
6bd865c
7440665
 
bc9a69a
7440665
 
0a48097
7440665
 
0a48097
 
7440665
 
 
 
0a48097
7440665
0a48097
7440665
 
6bd865c
7440665
581837a
7440665
 
 
7809429
6b3081a
7440665
 
6bd865c
7440665
6bd865c
7440665
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6bd865c
e3be785
7440665
 
 
 
 
6bd865c
7440665
6bd865c
7440665
 
 
 
 
 
 
6b3081a
 
7440665
 
 
 
10fca1b
7440665
10fca1b
 
 
 
 
7440665
 
14fcd29
7440665
 
 
 
 
6b3081a
7440665
 
 
a361ccc
 
41753f4
7440665
 
 
6b3081a
 
 
7440665
 
 
6b3081a
 
 
 
 
7440665
 
 
6b3081a
7440665
 
 
 
 
 
 
bdd28a4
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
import os
import gradio as gr
import numpy as np
import random
from huggingface_hub import AsyncInferenceClient
#from translatepy import Translator
from gradio_client import Client, handle_file
from PIL import Image
from huggingface_hub import login
from themes import IndonesiaTheme  # Import custom IndonesiaTheme
from loras import loras
MAX_SEED = np.iinfo(np.int32).max

HF_TOKEN = os.getenv('HF_TOKEN_UPSCALER')
HF_TOKEN_UPSCALER = os.getenv('HF_TOKEN_UPSCALER')
qwen_client = Client("K00B404/HugChatWrap",hf_token=HF_TOKEN)
loaded_loras=[]
for lora in loras:
    print(lora.get('repo'))
    loaded_loras.append(lora.get('repo'))
    
# Function to enable LoRA if selected
def enable_lora(lora_add, basemodel):
    print(f"[-] Determining model: LoRA {'enabled' if lora_add else 'disabled'}, base model: {basemodel}")
    return basemodel if not lora_add else lora_add

def generate_character_description(character_prompt, system_message = """
        You are a character description generator. Create detailed, vivid descriptions 
        of characters including their physical appearance, personality, and notable features. Keep the 
        description focused on visual elements that could be used for image generation.
        """
    ):
    """Generate detailed character description using K00B404/HugChatWrap space"""
    try:
        result = qwen_client.predict(
            message=character_prompt,
            param_2=system_message,
            param_3=100,
            param_4=0.9,
            param_5=0.99,
            api_name="/chat"
        )
        
        return result
    except Exception as e:
        return f"Error generating description: {str(e)}"
        
# Function to generate image
async def generate_image(prompt, model, lora_word, width, height, scales, steps, seed):
    try:
        if seed == -1:
            seed = random.randint(0, MAX_SEED)
        seed = int(seed)

        print(f"[-] Menerjemahkan prompt: {prompt}")
        #text = generate_character_description(str(Translator().translate(prompt, 'English'))) + "," + lora_word
        
        print(f"[-] Generating image with prompt: {text}, model: {model}")
        client = AsyncInferenceClient()
        image = await client.text_to_image(prompt=text, height=height, width=width, guidance_scale=scales, num_inference_steps=steps, model=model)
        return image, seed
    except Exception as e:
        print(f"[-] Error generating image: {e}")
        return None, None

# Function to upscale image
def get_upscale_finegrain(prompt, img_path, upscale_factor):
    try:
        print(f"[-] Processing with Factor {upscale_factor} for Image {img_path}")
        client = Client("finegrain/finegrain-image-enhancer", hf_token=HF_TOKEN_UPSCALER)
        result = client.predict(
            input_image=handle_file(img_path), 
            prompt=prompt, 
            negative_prompt="worst quality, low quality, normal quality",
            upscale_factor=upscale_factor,
            controlnet_scale=0.7,
            controlnet_decay=1,
            condition_scale=6,
            denoise_strength=0.33, 
            num_inference_steps=20,
            solver="DDIM", 
            api_name="/process"
        )
        print(f"[-] Proses upscaling berhasil.")
        return result[1]  # Return upscale image path
    except Exception as e:
        print(f"[-] Error scaling image: {e}")
        return None
        
# Main function to generate images and optionally upscale
async def gen(prompt, basemodel, width, height, scales, steps, seed, upscale_factor, process_upscale, lora_model, process_lora):
    print(f"[-] Memulai generasi gambar dengan prompt: {prompt}")
    
    model = enable_lora(lora_model, basemodel) if process_lora else basemodel
    print(f"[-] Menggunakan model: {model}")

    image, seed = await generate_image(prompt, model, "", width, height, scales, steps, seed)
    
    if image is None:
        print("[-] Image generation failed.")
        return []

    image_path = "temp_image.jpg"
    print(f"[-] Menyimpan gambar sementara di: {image_path}")
    image.save(image_path, format="JPEG")

    upscale_image_path = None
    if process_upscale:
        print(f"[-] Memproses upscaling dengan faktor: {upscale_factor}")
        upscale_image_path = get_upscale_finegrain(prompt, image_path, upscale_factor)
        if upscale_image_path is not None and os.path.exists(upscale_image_path):
            print(f"[-] Proses upscaling selesai. Gambar tersimpan di: {upscale_image_path}")
            return [image_path, upscale_image_path]  # Return both images
        else:
            print("[-] Upscaling process, select the factor.")

    return [image_path]

# CSS for styling the interface
css = """
#col-left, #col-mid, #col-right {
    margin: 0 auto;
    max-width: 400px;
    padding: 10px;
    border-radius: 15px;
    background-color: #f9f9f9;
    box-shadow: 0 4px 8px rgba(0, 0, 0, 0.1);
}
#banner {
    width: 100%;
    text-align: center;
    margin-bottom: 20px;
}
#run-button {
    background-color: #ff4b5c;
    color: white;
    font-weight: bold;
    padding: 10px;
    border-radius: 10px;
    cursor: pointer;
    box-shadow: 0 4px 8px rgba(0, 0, 0, 0.2);
}
#footer {
    text-align: center;
    margin-top: 20px;
    color: silver;
}
"""

# Creating Gradio interface
with gr.Blocks(css=css, theme=IndonesiaTheme()) as WallpaperFluxMaker:
    # Displaying the application title
    gr.HTML('<div id="banner">✨ Flux MultiMode Generator + Upscaler ✨</div>')

    with gr.Column(elem_id="col-container"):
        # Output section (replacing ImageSlider with gr.Gallery)
        with gr.Row():
            output_res = gr.Gallery(label="⚡ Flux / Upscaled Image ⚡", elem_id="output-res", columns=2, height="auto")

        # User input section split into two columns
        with gr.Row():
            # Column 1: Input prompt, LoRA, and base model
            with gr.Column(scale=1, elem_id="col-left"):
                prompt = gr.Textbox(
                    label="📜 Image Description", 
                    placeholder="Write your prompt in any language, and it will be automatically translated into English.",
                    elem_id="textbox-prompt"
                )

                basemodel_choice = gr.Dropdown(
                    label="🖼️ Select a Model", 
                    choices=[
                        "black-forest-labs/FLUX.1-schnell",
                        "black-forest-labs/FLUX.1-dev",
                        "black-forest-labs/FLUX.1-merged",
                        "dataautogpt3/FLUX-SyntheticAnime",
                        "Shakker-Labs/FLUX.1-dev-LoRA-AntiBlur"
                        "Shakker-Labs/FLUX.1-dev-ControlNet-Union-Pro", 
                        "Shakker-Labs/FLUX.1-dev-LoRA-add-details", 
                        "city96/FLUX.1-schnell-gguf"
                    ], 
                    value="black-forest-labs/FLUX.1-schnell"
                )

                lora_model_choice = gr.Dropdown(
                    label="🎨 select a LoRA", 
                    choices=[
                        "Shakker-Labs/FLUX.1-dev-LoRA-add-details", 
                        "XLabs-AI/flux-RealismLora", 
                        "enhanceaiteam/Flux-uncensored",
                        "Keltezaa/female-masturbation-fingering"
                    ]+loaded_loras, 
                    value="XLabs-AI/flux-RealismLora"
                )

                process_lora =gr.Checkbox(label="🎨 Use LoRA")
                process_upscale = gr.Checkbox(label="🔍 Upscale resolution")
                upscale_factor = gr.Radio(label="🔍 Upscale factor", choices=[2, 4, 8], value=2)

            # Column 2: Advanced options (always open)
            with gr.Column(scale=1, elem_id="col-right"):
                with gr.Accordion(label="⚙️ Settings", open=True):
                    width = gr.Slider(label="Width", minimum=512, maximum=1280, step=8, value=1280)
                    height = gr.Slider(label="Height", minimum=512, maximum=1280, step=8, value=768)
                    scales = gr.Slider(label="Scale", minimum=1, maximum=20, step=1, value=8)
                    steps = gr.Slider(label="Steps", minimum=1, maximum=100, step=1, value=8)
                    seed = gr.Number(label="Seed", value=-1)

        # Button to generate image
        btn = gr.Button("🚀 Bombs away!", elem_id="generate-btn")

        # Running the `gen` function when "Generate" button is pressed
        btn.click(fn=gen, inputs=[
            prompt, basemodel_choice, width, height, scales, steps, seed, upscale_factor, process_upscale, lora_model_choice, process_lora
        ], outputs=output_res)

# Launching the Gradio app
WallpaperFluxMaker.queue(api_open=False).launch(show_api=True)