File size: 11,708 Bytes
d03461e 92b02bc d03461e 3d8696b ffd5d00 d985af9 4597e9d d03461e 4597e9d 793cfe5 e3d5bbb 92b02bc e3d5bbb d985af9 e3d5bbb 92b02bc e3d5bbb 92b02bc e3d5bbb ffd5d00 d03461e e3d5bbb 92b02bc e3d5bbb 92b02bc e3d5bbb d985af9 d03461e 92b02bc d03461e 92b02bc d03461e 92b02bc d03461e d985af9 92b02bc 3bacb44 d03461e d985af9 d03461e 92b02bc d03461e 3d59207 92b02bc d03461e 2ebe1e7 9ff236d 2ebe1e7 d03461e 92b02bc d03461e 92b02bc d03461e 92b02bc d03461e 92b02bc d03461e 92b02bc d03461e 7e008d6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 |
import os
import gradio as gr
import numpy as np
import random
from huggingface_hub import AsyncInferenceClient
from translatepy import Translator
from gradio_client import Client, handle_file
from PIL import Image
from pathlib import Path
MAX_SEED = np.iinfo(np.int32).max
HF_TOKEN = os.getenv('HF_TOKEN')
HF_TOKEN_UPSCALER = os.getenv('HF_TOKEN')
css2="""
/* Apply dark theme (black background) */
body {
background-color: #000000;
color: #FFFFFF;
}
/* Style the Gradio interface */
.gradio-container {
background-color: #000000;
border: 2px solid #FFFFFF;
box-shadow: 0 0 10px rgba(255, 255, 255, 0.1);
}
/* Title and markdown text */
.gradio-markdown h1, .gradio-markdown h2, .gradio-markdown h3 {
color: #FFFFFF;
}
/* Input boxes (e.g., Textbox) */
.gradio-textbox input, .gradio-textbox textarea {
background-color: #222222;
color: #FFFFFF;
border: 2px solid #444444;
border-radius: 8px;
padding: 10px;
font-size: 16px;
box-shadow: 0 0 5px rgba(255, 255, 255, 0.2);
transition: 0.3s ease-in-out;
}
.gradio-textbox input:focus, .gradio-textbox textarea:focus {
border-color: #ff00ff;
box-shadow: 0 0 10px rgba(255, 0, 255, 0.7);
}
/* Buttons */
.gradio-button {
background: linear-gradient(45deg, #ff007f, #ff00ff, #00ff00, #00ffff, #0000ff, #ff8c00);
color: white;
font-weight: bold;
border: 2px solid #444444;
border-radius: 10px;
padding: 12px 20px;
box-shadow: 0 0 15px rgba(255, 255, 255, 0.3);
cursor: pointer;
transition: 0.3s ease-in-out;
font-size: 16px;
text-transform: uppercase;
}
.gradio-button:hover {
background: linear-gradient(45deg, #ff8c00, #00ffff, #ff00ff, #ff007f, #0000ff, #00ff00);
box-shadow: 0 0 20px rgba(255, 255, 255, 0.5);
}
/* Dropdown */
.gradio-dropdown select {
background-color: #222222;
color: #FFFFFF;
border: 2px solid #444444;
border-radius: 8px;
padding: 8px 12px;
box-shadow: 0 0 5px rgba(255, 255, 255, 0.2);
}
.gradio-dropdown select:focus {
border-color: #ff00ff;
box-shadow: 0 0 10px rgba(255, 0, 255, 0.7);
}
/* Chatbot box */
.gradio-chatbot {
background-color: #222222;
border: 2px solid #444444;
color: #FFFFFF;
padding: 15px;
border-radius: 12px;
box-shadow: 0 0 10px rgba(255, 255, 255, 0.2);
}
/* Slider */
.gradio-slider input {
background-color: #222222;
border: 2px solid #444444;
color: #FFFFFF;
border-radius: 8px;
padding: 10px;
box-shadow: 0 0 5px rgba(255, 255, 255, 0.2);
}
.gradio-slider input:focus {
border-color: #ff00ff;
box-shadow: 0 0 10px rgba(255, 0, 255, 0.7);
}
/* Accordion */
.gradio-accordion {
background-color: #222222;
border: 2px solid #444444;
color: #FFFFFF;
padding: 15px;
border-radius: 12px;
box-shadow: 0 0 10px rgba(255, 255, 255, 0.2);
}
.gradio-accordion-button {
background-color: #444444;
color: #FFFFFF;
border: none;
border-radius: 8px;
padding: 8px 16px;
box-shadow: 0 0 5px rgba(255, 255, 255, 0.1);
transition: 0.3s ease-in-out;
}
.gradio-accordion-button:hover {
background-color: #ff00ff;
box-shadow: 0 0 15px rgba(255, 0, 255, 0.5);
}
/* General hover effect for all Gradio elements */
.gradio-container *:hover {
box-shadow: 0 0 10px rgba(255, 255, 255, 0.5);
}
/* Animation for glowing neon effect */
@keyframes neon {
0% {
text-shadow: 0 0 5px #ff0000, 0 0 10px #ff0000, 0 0 15px #ff0000, 0 0 20px #ff0000, 0 0 25px #ff0000, 0 0 30px #ff0000;
}
50% {
text-shadow: 0 0 5px #00ff00, 0 0 10px #00ff00, 0 0 15px #00ff00, 0 0 20px #00ff00, 0 0 25px #00ff00, 0 0 30px #00ff00;
}
100% {
text-shadow: 0 0 5px #0000ff, 0 0 10px #0000ff, 0 0 15px #0000ff, 0 0 20px #0000ff, 0 0 25px #0000ff, 0 0 30px #0000ff;
}
}
/* Apply glowing text effect */
.gradio-container h1, .gradio-container h2, .gradio-container h3, .gradio-container p {
animation: neon 1.5s ease-in-out infinite alternate;
}
"""
# Define base models
base_models = [
"black-forest-labs/FLUX.1-schnell",
"black-forest-labs/FLUX.1-DEV",
"Shakker-Labs/FLUX.1-dev-ControlNet-Union-Pro"
]
def load_local_loras(lora_directory="lora_models"):
"""Load loras from local safetensor files"""
loras_list_custom = []
if not os.path.exists(lora_directory):
os.makedirs(lora_directory)
print(f"[-] Created lora directory: {lora_directory}")
lora_files = list(Path(lora_directory).glob("*.safetensors"))
for lora_file in lora_files:
lora_name = lora_file.stem
lora_path = str(lora_file.absolute())
loras_list_custom.append({
"name": lora_name,
"path": lora_path
})
print(f"[-] Loaded {len(loras_list_custom)} local loras")
return loras_list_custom
# Function to enable LoRA if selected
def enable_lora(lora_path, basemodel):
print(f"[-] Determining model: LoRA {'enabled' if lora_path else 'disabled'}, base model: {basemodel}")
if not lora_path:
return basemodel
# Configure model with local lora
return {
"model": basemodel,
"lora_weights": lora_path,
"lora_scale": 0.75 # Adjust this value as needed
}
# Function to upscale image
def get_upscale_finegrain(prompt, img_path, upscale_factor):
try:
print(f"[-] Starting upscaling process with factor {upscale_factor} for image {img_path}")
client = Client("finegrain/finegrain-image-enhancer", hf_token=HF_TOKEN_UPSCALER)
result = client.predict(
input_image=handle_file(img_path),
prompt=prompt,
negative_prompt="worst quality, low quality, normal quality",
upscale_factor=upscale_factor,
controlnet_scale=0.6,
controlnet_decay=1,
condition_scale=6,
denoise_strength=0.35,
num_inference_steps=18,
solver="DDIM",
api_name="/process"
)
print(f"[-] Upscaling successful.")
return result[1] # Return upscale image path
except Exception as e:
print(f"[-] Error scaling image: {e}")
return None
# Function to generate image
async def generate_image(prompt, model_config, lora_word, width, height, scales, steps, seed):
try:
if seed == -1:
seed = random.randint(0, MAX_SEED)
seed = int(seed)
print(f"[-] Translating prompt: {prompt}")
text = str(Translator().translate(prompt, 'English')) + "," + lora_word
print(f"[-] Generating image with prompt: {text}")
client = AsyncInferenceClient(token=HF_TOKEN)
# Handle both simple model string and lora config
if isinstance(model_config, dict):
print(f"[-] Using model with LoRA: {model_config}")
image = await client.text_to_image(
prompt=text,
height=height,
width=width,
guidance_scale=scales,
num_inference_steps=steps,
model=model_config["model"],
lora_weights=model_config["lora_weights"],
lora_scale=model_config["lora_scale"]
)
else:
print(f"[-] Using base model: {model_config}")
image = await client.text_to_image(
prompt=text,
height=height,
width=width,
guidance_scale=scales,
num_inference_steps=steps,
model=model_config
)
return image, seed
except Exception as e:
print(f"[-] Error generating image: {e}")
return None, None
# Main function to generate images and optionally upscale
async def gen(prompt, basemodel, width, height, scales, steps, seed, upscale_factor, process_upscale, lora_model, process_lora):
print(f"[-] Starting image generation with prompt: {prompt}")
model = enable_lora(lora_model, basemodel) if process_lora else basemodel
print(f"[-] Using model: {model}")
image, seed = await generate_image(prompt, model, "", width, height, scales, steps, seed)
if image is None:
print("[-] Image generation failed.")
return []
image_path = "temp_image.jpg"
print(f"[-] Saving temporary image to: {image_path}")
image.save(image_path, format="JPEG")
upscale_image_path = None
if process_upscale:
print(f"[-] Processing upscaling with factor: {upscale_factor}")
upscale_image_path = get_upscale_finegrain(prompt, image_path, upscale_factor)
if upscale_image_path is not None and os.path.exists(upscale_image_path):
print(f"[-] Upscaling complete. Image saved at: {upscale_image_path}")
return [image_path, upscale_image_path] # Return both images
else:
print("[-] Upscaling failed, upscaled image path not found.")
return [image_path]
# Load local loras
local_loras = load_local_loras()
# Creating Gradio interface
with gr.Blocks(css=css2, theme=IndonesiaTheme()) as WallpaperFluxMaker:
gr.HTML('<div id="banner">✨ Flux MultiMode Generator + Upscaler ✨</div>')
with gr.Column(elem_id="col-container"):
with gr.Row():
output_res = gr.Gallery(
label="⚡ Flux / Upscaled Image ⚡",
elem_id="output-res",
columns=2,
height="auto"
)
with gr.Row():
with gr.Column(scale=1, elem_id="col-left"):
prompt = gr.Textbox(
label="📜 Description",
placeholder="Write your prompt in any language, it will be translated to English.",
elem_id="textbox-prompt"
)
basemodel_choice = gr.Dropdown(
label="🖼️ Select Model",
choices=base_models,
value=base_models[0]
)
# Updated to use local lora paths
lora_model_choice = gr.Dropdown(
label="🎨 Select LoRA",
choices=[lora["path"] for lora in local_loras],
value=local_loras[0]["path"] if local_loras else None
)
process_lora = gr.Checkbox(label="🎨 Enable LoRA")
process_upscale = gr.Checkbox(label="🔍 Enable Upscaling")
upscale_factor = gr.Radio(
label="🔍 Upscale Factor",
choices=[2, 4, 8],
value=2
)
with gr.Column(scale=1, elem_id="col-right"):
with gr.Accordion(label="⚙️ Advanced Options", open=True):
width = gr.Slider(label="Width", minimum=512, maximum=1280, step=8, value=1280)
height = gr.Slider(label="Height", minimum=512, maximum=1280, step=8, value=768)
scales = gr.Slider(label="Scale", minimum=1, maximum=20, step=1, value=8)
steps = gr.Slider(label="Steps", minimum=1, maximum=100, step=1, value=8)
seed = gr.Number(label="Seed", value=-1)
btn = gr.Button("🚀 Generate Image", elem_id="generate-btn")
btn.click(
fn=gen,
inputs=[
prompt, basemodel_choice, width, height, scales, steps, seed,
upscale_factor, process_upscale, lora_model_choice, process_lora
],
outputs=output_res
)
WallpaperFluxMaker.queue(api_open=True).launch(show_api=True) |