File size: 11,708 Bytes
d03461e
 
 
 
 
 
 
 
92b02bc
d03461e
3d8696b
ffd5d00
 
d985af9
4597e9d
 
 
 
 
 
d03461e
4597e9d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
793cfe5
 
 
 
 
 
 
 
e3d5bbb
92b02bc
e3d5bbb
 
 
d985af9
 
e3d5bbb
 
 
 
 
 
92b02bc
e3d5bbb
92b02bc
 
 
 
e3d5bbb
ffd5d00
d03461e
e3d5bbb
 
 
 
 
92b02bc
e3d5bbb
92b02bc
 
 
e3d5bbb
 
d985af9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d03461e
92b02bc
d03461e
 
 
 
 
92b02bc
d03461e
 
92b02bc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d03461e
 
 
 
 
d985af9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
92b02bc
 
3bacb44
d03461e
d985af9
d03461e
 
 
 
92b02bc
 
 
 
 
 
d03461e
 
 
 
3d59207
92b02bc
d03461e
 
 
 
2ebe1e7
9ff236d
2ebe1e7
d03461e
 
92b02bc
d03461e
92b02bc
 
 
d03461e
 
92b02bc
 
 
 
 
 
 
d03461e
 
92b02bc
 
 
 
 
d03461e
 
92b02bc
 
 
 
 
 
 
 
 
 
d03461e
7e008d6
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
import os
import gradio as gr
import numpy as np
import random
from huggingface_hub import AsyncInferenceClient
from translatepy import Translator
from gradio_client import Client, handle_file
from PIL import Image
from pathlib import Path
MAX_SEED = np.iinfo(np.int32).max

HF_TOKEN = os.getenv('HF_TOKEN')
HF_TOKEN_UPSCALER = os.getenv('HF_TOKEN')

css2="""
/* Apply dark theme (black background) */
body {
    background-color: #000000;
    color: #FFFFFF;
}

/* Style the Gradio interface */
.gradio-container {
    background-color: #000000;
    border: 2px solid #FFFFFF;
    box-shadow: 0 0 10px rgba(255, 255, 255, 0.1);
}

/* Title and markdown text */
.gradio-markdown h1, .gradio-markdown h2, .gradio-markdown h3 {
    color: #FFFFFF;
}

/* Input boxes (e.g., Textbox) */
.gradio-textbox input, .gradio-textbox textarea {
    background-color: #222222;
    color: #FFFFFF;
    border: 2px solid #444444;
    border-radius: 8px;
    padding: 10px;
    font-size: 16px;
    box-shadow: 0 0 5px rgba(255, 255, 255, 0.2);
    transition: 0.3s ease-in-out;
}

.gradio-textbox input:focus, .gradio-textbox textarea:focus {
    border-color: #ff00ff;
    box-shadow: 0 0 10px rgba(255, 0, 255, 0.7);
}

/* Buttons */
.gradio-button {
    background: linear-gradient(45deg, #ff007f, #ff00ff, #00ff00, #00ffff, #0000ff, #ff8c00);
    color: white;
    font-weight: bold;
    border: 2px solid #444444;
    border-radius: 10px;
    padding: 12px 20px;
    box-shadow: 0 0 15px rgba(255, 255, 255, 0.3);
    cursor: pointer;
    transition: 0.3s ease-in-out;
    font-size: 16px;
    text-transform: uppercase;
}

.gradio-button:hover {
    background: linear-gradient(45deg, #ff8c00, #00ffff, #ff00ff, #ff007f, #0000ff, #00ff00);
    box-shadow: 0 0 20px rgba(255, 255, 255, 0.5);
}

/* Dropdown */
.gradio-dropdown select {
    background-color: #222222;
    color: #FFFFFF;
    border: 2px solid #444444;
    border-radius: 8px;
    padding: 8px 12px;
    box-shadow: 0 0 5px rgba(255, 255, 255, 0.2);
}

.gradio-dropdown select:focus {
    border-color: #ff00ff;
    box-shadow: 0 0 10px rgba(255, 0, 255, 0.7);
}

/* Chatbot box */
.gradio-chatbot {
    background-color: #222222;
    border: 2px solid #444444;
    color: #FFFFFF;
    padding: 15px;
    border-radius: 12px;
    box-shadow: 0 0 10px rgba(255, 255, 255, 0.2);
}

/* Slider */
.gradio-slider input {
    background-color: #222222;
    border: 2px solid #444444;
    color: #FFFFFF;
    border-radius: 8px;
    padding: 10px;
    box-shadow: 0 0 5px rgba(255, 255, 255, 0.2);
}

.gradio-slider input:focus {
    border-color: #ff00ff;
    box-shadow: 0 0 10px rgba(255, 0, 255, 0.7);
}

/* Accordion */
.gradio-accordion {
    background-color: #222222;
    border: 2px solid #444444;
    color: #FFFFFF;
    padding: 15px;
    border-radius: 12px;
    box-shadow: 0 0 10px rgba(255, 255, 255, 0.2);
}

.gradio-accordion-button {
    background-color: #444444;
    color: #FFFFFF;
    border: none;
    border-radius: 8px;
    padding: 8px 16px;
    box-shadow: 0 0 5px rgba(255, 255, 255, 0.1);
    transition: 0.3s ease-in-out;
}

.gradio-accordion-button:hover {
    background-color: #ff00ff;
    box-shadow: 0 0 15px rgba(255, 0, 255, 0.5);
}

/* General hover effect for all Gradio elements */
.gradio-container *:hover {
    box-shadow: 0 0 10px rgba(255, 255, 255, 0.5);
}

/* Animation for glowing neon effect */
@keyframes neon {
    0% {
        text-shadow: 0 0 5px #ff0000, 0 0 10px #ff0000, 0 0 15px #ff0000, 0 0 20px #ff0000, 0 0 25px #ff0000, 0 0 30px #ff0000;
    }
    50% {
        text-shadow: 0 0 5px #00ff00, 0 0 10px #00ff00, 0 0 15px #00ff00, 0 0 20px #00ff00, 0 0 25px #00ff00, 0 0 30px #00ff00;
    }
    100% {
        text-shadow: 0 0 5px #0000ff, 0 0 10px #0000ff, 0 0 15px #0000ff, 0 0 20px #0000ff, 0 0 25px #0000ff, 0 0 30px #0000ff;
    }
}

/* Apply glowing text effect */
.gradio-container h1, .gradio-container h2, .gradio-container h3, .gradio-container p {
    animation: neon 1.5s ease-in-out infinite alternate;
}

"""

# Define base models
base_models = [
    "black-forest-labs/FLUX.1-schnell", 
    "black-forest-labs/FLUX.1-DEV", 
    "Shakker-Labs/FLUX.1-dev-ControlNet-Union-Pro"
]

def load_local_loras(lora_directory="lora_models"):
    """Load loras from local safetensor files"""
    loras_list_custom = []
    
    if not os.path.exists(lora_directory):
        os.makedirs(lora_directory)
        print(f"[-] Created lora directory: {lora_directory}")
        
    lora_files = list(Path(lora_directory).glob("*.safetensors"))
    
    for lora_file in lora_files:
        lora_name = lora_file.stem
        lora_path = str(lora_file.absolute())
        loras_list_custom.append({
            "name": lora_name,
            "path": lora_path
        })
    
    print(f"[-] Loaded {len(loras_list_custom)} local loras")
    return loras_list_custom

# Function to enable LoRA if selected
def enable_lora(lora_path, basemodel):
    print(f"[-] Determining model: LoRA {'enabled' if lora_path else 'disabled'}, base model: {basemodel}")
    if not lora_path:
        return basemodel
        
    # Configure model with local lora
    return {
        "model": basemodel,
        "lora_weights": lora_path,
        "lora_scale": 0.75  # Adjust this value as needed
    }

# Function to upscale image
def get_upscale_finegrain(prompt, img_path, upscale_factor):
    try:
        print(f"[-] Starting upscaling process with factor {upscale_factor} for image {img_path}")
        client = Client("finegrain/finegrain-image-enhancer", hf_token=HF_TOKEN_UPSCALER)
        result = client.predict(
            input_image=handle_file(img_path), 
            prompt=prompt, 
            negative_prompt="worst quality, low quality, normal quality",
            upscale_factor=upscale_factor,
            controlnet_scale=0.6,
            controlnet_decay=1,
            condition_scale=6,
            denoise_strength=0.35, 
            num_inference_steps=18,
            solver="DDIM", 
            api_name="/process"
        )
        print(f"[-] Upscaling successful.")
        return result[1]  # Return upscale image path
    except Exception as e:
        print(f"[-] Error scaling image: {e}")
        return None

# Function to generate image
async def generate_image(prompt, model_config, lora_word, width, height, scales, steps, seed):
    try:
        if seed == -1:
            seed = random.randint(0, MAX_SEED)
        seed = int(seed)

        print(f"[-] Translating prompt: {prompt}")
        text = str(Translator().translate(prompt, 'English')) + "," + lora_word
        
        print(f"[-] Generating image with prompt: {text}")
        client = AsyncInferenceClient(token=HF_TOKEN)
        
        # Handle both simple model string and lora config
        if isinstance(model_config, dict):
            print(f"[-] Using model with LoRA: {model_config}")
            image = await client.text_to_image(
                prompt=text,
                height=height,
                width=width,
                guidance_scale=scales,
                num_inference_steps=steps,
                model=model_config["model"],
                lora_weights=model_config["lora_weights"],
                lora_scale=model_config["lora_scale"]
            )
        else:
            print(f"[-] Using base model: {model_config}")
            image = await client.text_to_image(
                prompt=text,
                height=height,
                width=width,
                guidance_scale=scales,
                num_inference_steps=steps,
                model=model_config
            )
            
        return image, seed
    except Exception as e:
        print(f"[-] Error generating image: {e}")
        return None, None

# Main function to generate images and optionally upscale
async def gen(prompt, basemodel, width, height, scales, steps, seed, upscale_factor, process_upscale, lora_model, process_lora):
    print(f"[-] Starting image generation with prompt: {prompt}")
    
    model = enable_lora(lora_model, basemodel) if process_lora else basemodel
    print(f"[-] Using model: {model}")

    image, seed = await generate_image(prompt, model, "", width, height, scales, steps, seed)
    
    if image is None:
        print("[-] Image generation failed.")
        return []

    image_path = "temp_image.jpg"
    print(f"[-] Saving temporary image to: {image_path}")
    image.save(image_path, format="JPEG")

    upscale_image_path = None
    if process_upscale:
        print(f"[-] Processing upscaling with factor: {upscale_factor}")
        upscale_image_path = get_upscale_finegrain(prompt, image_path, upscale_factor)
        if upscale_image_path is not None and os.path.exists(upscale_image_path):
            print(f"[-] Upscaling complete. Image saved at: {upscale_image_path}")
            return [image_path, upscale_image_path]  # Return both images
        else:
            print("[-] Upscaling failed, upscaled image path not found.")

    return [image_path]

# Load local loras
local_loras = load_local_loras()

# Creating Gradio interface
with gr.Blocks(css=css2, theme=IndonesiaTheme()) as WallpaperFluxMaker:
    gr.HTML('<div id="banner">✨ Flux MultiMode Generator + Upscaler ✨</div>')

    with gr.Column(elem_id="col-container"):
        with gr.Row():
            output_res = gr.Gallery(
                label="⚡ Flux / Upscaled Image ⚡", 
                elem_id="output-res",
                columns=2,
                height="auto"
            )

        with gr.Row():
            with gr.Column(scale=1, elem_id="col-left"):
                prompt = gr.Textbox(
                    label="📜 Description", 
                    placeholder="Write your prompt in any language, it will be translated to English.",
                    elem_id="textbox-prompt"
                )

                basemodel_choice = gr.Dropdown(
                    label="🖼️ Select Model", 
                    choices=base_models, 
                    value=base_models[0]
                )

                # Updated to use local lora paths
                lora_model_choice = gr.Dropdown(
                    label="🎨 Select LoRA",
                    choices=[lora["path"] for lora in local_loras],
                    value=local_loras[0]["path"] if local_loras else None
                )

                process_lora = gr.Checkbox(label="🎨 Enable LoRA")
                process_upscale = gr.Checkbox(label="🔍 Enable Upscaling")
                upscale_factor = gr.Radio(
                    label="🔍 Upscale Factor",
                    choices=[2, 4, 8],
                    value=2
                )

            with gr.Column(scale=1, elem_id="col-right"):
                with gr.Accordion(label="⚙️ Advanced Options", open=True):
                    width = gr.Slider(label="Width", minimum=512, maximum=1280, step=8, value=1280)
                    height = gr.Slider(label="Height", minimum=512, maximum=1280, step=8, value=768)
                    scales = gr.Slider(label="Scale", minimum=1, maximum=20, step=1, value=8)
                    steps = gr.Slider(label="Steps", minimum=1, maximum=100, step=1, value=8)
                    seed = gr.Number(label="Seed", value=-1)

        btn = gr.Button("🚀 Generate Image", elem_id="generate-btn")
        
        btn.click(
            fn=gen,
            inputs=[
                prompt, basemodel_choice, width, height, scales, steps, seed,
                upscale_factor, process_upscale, lora_model_choice, process_lora
            ],
            outputs=output_res
        )

WallpaperFluxMaker.queue(api_open=True).launch(show_api=True)