K00B404's picture
Update app.py
362000d verified
import os
import gradio as gr
import numpy as np
from rembg import remove
import random
from huggingface_hub import AsyncInferenceClient
from translatepy import Translator
from gradio_client import Client, handle_file
from PIL import Image
from huggingface_hub import login
from themes import IndonesiaTheme # Import custom IndonesiaTheme
from loras import loras
MAX_SEED = np.iinfo(np.int32).max
HF_TOKEN = os.getenv('HF_TOKEN_UPSCALER')
HF_TOKEN_UPSCALER = os.getenv('HF_TOKEN_UPSCALER')
qwen_client = Client("K00B404/HugChatWrap",hf_token=HF_TOKEN)
loaded_loras=[]
for lora in loras:
print(lora.get('repo'))
loaded_loras.append(lora.get('repo'))
# Function to enable LoRA if selected
def enable_lora(lora_add, basemodel):
print(f"[-] Determining model: LoRA {'enabled' if lora_add else 'disabled'}, base model: {basemodel}")
return basemodel if not lora_add else lora_add
def generate_character_description(character_prompt, system_message = """
You are a character description generator. Create detailed, vivid descriptions
of characters including their physical appearance, personality, and notable features. Keep the
description focused on visual elements that could be used for image generation.
"""
):
"""Generate detailed character description using K00B404/HugChatWrap space"""
try:
result = qwen_client.predict(
message=character_prompt,
param_2=system_message,
param_3=100,
param_4=0.9,
param_5=0.99,
api_name="/chat"
)
return result
except Exception as e:
return f"Error generating description: {str(e)}"
# Function to enable LoRA if selected
def enable_lora(lora_add, basemodel):
print(f"[-] Determining the model: LoRA {'activated' if lora_add else 'not activated'}, model dasar: {basemodel}")
return basemodel if not lora_add else lora_add
# Function to generate image
async def generate_image(prompt, model, lora_word, width, height, scales, steps, seed):
try:
if seed == -1:
seed = random.randint(0, MAX_SEED)
seed = int(seed)
print(f"[-] Menerjemahkan prompt: {prompt}")
text = str(Translator().translate(prompt, 'English')) + "," + lora_word
print(f"[-] Generating image with prompt: {text}, model: {model}")
client = AsyncInferenceClient()
image = await client.text_to_image(prompt=text, height=height, width=width, guidance_scale=scales, num_inference_steps=steps, model=model)
return image, seed
except Exception as e:
print(f"[-] Error generating image: {e}")
return None, None
# Function to upscale image
def get_upscale_finegrain(prompt, img_path, upscale_factor):
try:
print(f"[-] Memulai proses upscaling dengan faktor {upscale_factor} untuk gambar {img_path}")
client = Client("finegrain/finegrain-image-enhancer", hf_token=HF_TOKEN_UPSCALER)
result = client.predict(
input_image=handle_file(img_path),
prompt=prompt,
negative_prompt="worst quality, low quality, normal quality",
upscale_factor=upscale_factor,
controlnet_scale=0.6,
controlnet_decay=1,
condition_scale=6,
denoise_strength=0.35,
num_inference_steps=18,
solver="DDIM",
api_name="/process"
)
print(f"[-] Proses upscaling berhasil.")
return result[1] # Return upscale image path
except Exception as e:
print(f"[-] Error scaling image: {e}")
return None
# Main function to generate images and optionally upscale
async def gen(prompt, basemodel, width, height, scales, steps, seed, upscale_factor, process_upscale, lora_model, process_lora):
print(f"[-] Memulai generasi gambar dengan prompt: {prompt}")
model = enable_lora(lora_model, basemodel) if process_lora else basemodel
print(f"[-] Menggunakan model: {model}")
image, seed = await generate_image(prompt, model, "", width, height, scales, steps, seed)
if image is None:
print("[-] Image generation failed.")
return []
image_path = "temp_image.jpg"
print(f"[-] Menyimpan gambar sementara di: {image_path}")
image.save(image_path, format="JPEG")
upscale_image_path = None
if process_upscale:
print(f"[-] Memproses upscaling dengan faktor: {upscale_factor}")
upscale_image_path = get_upscale_finegrain(prompt, image_path, upscale_factor)
if upscale_image_path is not None and os.path.exists(upscale_image_path):
print(f"[-] Proses upscaling selesai. Gambar tersimpan di: {upscale_image_path}")
return [image_path, upscale_image_path] # Return both images
else:
print("[-] Upscaling failed, upscale image path not found")
return [image_path]
# CSS for styling the interface
css = """
#col-left, #col-mid, #col-right {
margin: 0 auto;
max-width: 400px;
padding: 10px;
border-radius: 15px;
background-color: #f9f9f9;
box-shadow: 0 4px 8px rgba(0, 0, 0, 0.1);
}
#banner {
width: 100%;
text-align: center;
margin-bottom: 20px;
}
#run-button {
background-color: #ff4b5c;
color: white;
font-weight: bold;
padding: 10px;
border-radius: 10px;
cursor: pointer;
box-shadow: 0 4px 8px rgba(0, 0, 0, 0.2);
}
#footer {
text-align: center;
margin-top: 20px;
color: silver;
}
"""
flux_lora_models = [
"strangerzonehf/Flux-Super-Realism-LoRA",
"prithivMLmods/Flux-Dalle-Mix-LoRA",
"strangerzonehf/Flux-Animeo-v1-LoRA",
"strangerzonehf/Flux-Animex-v2-LoRA",
"strangerzonehf/Flux-Super-Portrait-LoRA",
"strangerzonehf/Flux-Super-Blend-LoRA",
"strangerzonehf/Flux-3DXL-Partfile-0001",
"strangerzonehf/Flux-Midjourney-Mix2-LoRA",
"prithivMLmods/Flux-Long-Toon-LoRA",
"strangerzonehf/Flux-Isometric-3D-Cinematography",
"strangerzonehf/Flux-Cute-3D-Kawaii-LoRA",
"strangerzonehf/Flux-Isometric-3D-LoRA",
"prithivMLmods/Flux-Toonic-2.5D-LoRA",
"strangerzonehf/Flux-YWL-Realism-LoRA",
"prithivMLmods/Flux-Chill-Guy-Zone",
"p1atdev/flux.1-schnell-pvc-style-lora",
"strangerzonehf/Flux-C4C-Design-LoRA",
"prithivMLmods/Purple-Dreamy-Flux-LoRA",
"prithivMLmods/Canopus-LoRA-Flux-FaceRealism",
"alvdansen/softserve_anime",
"prithivMLmods/Fashion-Hut-Modeling-LoRA",
"Shakker-Labs/FLUX.1-dev-LoRA-One-Click-Creative-Template",
"prithivMLmods/Canopus-LoRA-Flux-UltraRealism-2.0",
"gokaygokay/Flux-Game-Assets-LoRA-v2",
"alvdansen/softpasty-flux-dev",
"Shakker-Labs/FLUX.1-dev-LoRA-add-details",
"prithivMLmods/Canopus-LoRA-Flux-Anime",
"aleksa-codes/flux-ghibsky-illustration",
"Shakker-Labs/FLUX.1-dev-LoRA-Dark-Fantasy",
"Norod78/Flux_1_Dev_LoRA_Paper-Cutout-Style",
"alvdansen/mooniverse",
"alvdansen/pola-photo-flux",
"multimodalart/flux-tarot-v1",
"prithivMLmods/Flux-Dev-Real-Anime-LoRA",
"diabolic6045/Flux_Sticker_Lora",
"XLabs-AI/flux-RealismLora",
"alvdansen/flux-koda",
"mgwr/Cine-Aesthetic",
"SebastianBodza/flux_cute3D",
"bingbangboom/flux_dreamscape",
"prithivMLmods/Canopus-Cute-Kawaii-Flux-LoRA",
"Raelina/Flux-Pastel-Anime",
"Shakker-Labs/FLUX.1-dev-LoRA-Vector-Journey",
"bingbangboom/flux-miniature-worlds",
"glif-loradex-trainer/bingbangboom_flux_surf",
"prithivMLmods/Canopus-Snoopy-Charlie-Brown-Flux-LoRA",
"alvdansen/sonny-anime-fixed",
"davisbro/flux-multi-angle",
"glif/how2draw",
"Shakker-Labs/FLUX.1-dev-LoRA-Text-Poster",
"SebastianBodza/Flux_Aquarell_Watercolor_v2",
"Purz/face-projection",
"martintomov/ecom-flux-v2",
"TheAwakenOne/max-headroom",
"renderartist/toyboxflux",
"Shakker-Labs/FLUX.1-dev-LoRA-live-3D",
"Shakker-Labs/FLUX.1-dev-LoRA-Garbage-Bag-Art",
"Shakker-Labs/FLUX.1-dev-LoRA-Logo-Design",
"punzel/flux_sadie_sink",
"punzel/flux_jenna_ortega",
"Wakkamaruh/balatro-poker-cards",
"lichorosario/flux-cubist-cartoon",
"iliketoasters/miniature-people",
"ampp/rough-kids-illustrations",
"lichorosario/flux-lora-tstvctr",
"lichorosario/flux-lora-gliff-tosti-vector-no-captions-2500s",
"AlekseyCalvin/Propaganda_Poster_Schnell_by_doctor_diffusion",
"WizWhite/Wiz-PunchOut_Ringside_Portrait",
"glif-loradex-trainer/kklors_flux_dev_long_exposure",
"DamarJati/streetwear-flux",
"strangerzonehf/Flux-NTFv4-Designs-LoRA",
"multimodalart/product-design",
"prithivMLmods/Canopus-LoRA-Flux-Typography-ASCII",
"mateo-19182/mosoco",
"jakedahn/flux-latentpop",
"glif-loradex-trainer/ddickinson_dstyl3xl",
"TDN-M/RetouchFLux",
"glif/anime-blockprint-style",
"renderartist/weirdthingsflux",
"lucataco/ReplicateFluxLoRA",
"alvdansen/haunted_linework_flux",
"fofr/flux-cassette-futurism",
"Wadaka/Mojo_Style_LoRA",
"Norod78/JojosoStyle-flux-lora",
"Chunte/flux-lora-Huggieverse",
"diabolic6045/Flux_Wallpaper_Lora",
"bingbangboom/flux_geopop",
"bingbangboom/flux_colorscape",
"dvyio/flux-lora-thermal-image",
"prithivMLmods/Canopus-Clothing-Flux-LoRA",
"dvyio/flux-lora-stippled-illustration",
"wayned/fruitlabels",
"punzel/flux_margot_robbie",
"glif/Brain-Melt-Acid-Art",
"jeremytai/enso-zen",
"veryVANYA/opus-ascii-flux",
"crystantine/cybrpnkz",
"fyp1/pattern_generation",
"TheAwakenOne/caricature",
"strangerzonehf/Flux-3DXL-Partfile-C0001",
"Purz/neon-sign",
"WizWhite/wizard-s-vintage-sardine-tins",
"TheAwakenOne/mtdp-balloon-character",
"glif/golden-haggadah",
"glif-loradex-trainer/usernametaken420__oz_ftw_balaclava",
"AlloReview/flux-lora-undraw",
"Disra/lora-anime-test-02",
"wanghaofan/Black-Myth-Wukong-FLUX-LoRA",
"nerijs/pastelcomic-flux",
"RareConcepts/Flux.1-dev-LoKr-Moonman",
"martintomov/ascii-flux-v1",
"Omarito2412/Stars-Galaxy-Flux",
"brushpenbob/flux-pencil-v2",
"Shakker-Labs/FLUX.1-dev-LoRA-Children-Simple-Sketch",
"victor/contemporarink",
"wavymulder/OverlordStyleFLUX",
"marceloxp/canny-quest",
"busetolunay/building_flux_lora_v1",
"Omarito2412/Tinker-Bell-Flux",
"Shakker-Labs/FLUX.1-dev-LoRA-playful-metropolis",
"prithivMLmods/Castor-Character-Polygon-Flux-LoRA",
"prithivMLmods/Castor-Gta6-Theme-Flux-LoRA",
"prithivMLmods/Castor-Flux-Concept-Gta6-Character-Design",
"prithivMLmods/Castor-3D-Sketchfab-Flux-LoRA",
"prithivMLmods/Castor-Collage-Dim-Flux-LoRA",
"brushpenbob/flux-midjourney-anime",
"Shakker-Labs/FLUX.1-dev-LoRA-add-details",
"XLabs-AI/flux-RealismLora",
"prashanth970/flux-lora-uncensored"
]
# Creating Gradio interface
with gr.Blocks(css=css, theme=IndonesiaTheme()) as WallpaperFluxMaker:
# Displaying the application title
gr.HTML('<div id="banner">✨ Flux MultiMode Generator + Upscaler ✨</div>')
with gr.Column(elem_id="col-container"):
# Output section (replacing ImageSlider with gr.Gallery)
with gr.Row():
output_res = gr.Gallery(label="⚡ Flux / Upscaled Image ⚡", elem_id="output-res", columns=2, height="auto")
# User input section split into two columns
with gr.Row():
# Column 1: Input prompt, LoRA, and base model
with gr.Column(scale=1, elem_id="col-left"):
prompt = gr.Textbox(
label="📜 Describe the image",
placeholder="Write your prompt in any language, and it will be directly translated into English..",
elem_id="textbox-prompt"
)
basemodel_choice = gr.Dropdown(
label="🖼️ Select Model",
choices=[
"black-forest-labs/FLUX.1-schnell",
"black-forest-labs/FLUX.1-DEV",
"enhanceaiteam/Flux-uncensored",
"Shakker-Labs/FLUX.1-dev-ControlNet-Union-Pro",
"Shakker-Labs/FLUX.1-dev-LoRA-add-details",
"city96/FLUX.1-dev-gguf",
"city96/FLUX.1-schnell-gguf"
],
value="city96/FLUX.1-dev-gguf"
)
lora_model_choice = gr.Dropdown(
label="🎨 Select LoRA",
choices=sorted(flux_lora_models),
value="XLabs-AI/flux-RealismLora"
)
process_lora = gr.Checkbox(label="🎨 Use LoRA")
process_upscale = gr.Checkbox(label="🔍 Enable Resolution Enhancement")
upscale_factor = gr.Radio(label="🔍Upscale factor", choices=[2, 4, 8], value=2)
# Column 2: Advanced options (always open)
with gr.Column(scale=1, elem_id="col-right"):
with gr.Accordion(label="⚙️ Advanced Options", open=True):
width = gr.Slider(label="Width", minimum=512, maximum=1280, step=8, value=1280)
height = gr.Slider(label="Height", minimum=512, maximum=1280, step=8, value=768)
scales = gr.Slider(label="Scale", minimum=1, maximum=20, step=1, value=8)
steps = gr.Slider(label="Steps", minimum=1, maximum=100, step=1, value=8)
seed = gr.Number(label="Seed", value=-1)
# Button to generate image
btn = gr.Button("🚀Generate Image", elem_id="generate-btn")
# Running the `gen` function when "Generate" button is pressed
btn.click(fn=gen, inputs=[
prompt, basemodel_choice, width, height, scales, steps, seed, upscale_factor, process_upscale, lora_model_choice, process_lora
], outputs=output_res)
# Launching the Gradio app
WallpaperFluxMaker.queue(api_open=True).launch(show_api=True)