|
import os |
|
import random |
|
import numpy as np |
|
from huggingface_hub import AsyncInferenceClient |
|
from translatepy import Translator |
|
from gradio_client import Client, handle_file |
|
from PIL import Image |
|
|
|
|
|
MAX_SEED = np.iinfo(np.int32).max |
|
HF_TOKEN = os.getenv('HF_TOKEN') |
|
HF_TOKEN_UPSCALER = os.getenv('HF_TOKEN') |
|
|
|
|
|
class Lorify: |
|
def __init__(self, hf_token=None, hf_token_upscaler=None): |
|
|
|
self.hf_token = hf_token or HF_TOKEN |
|
self.hf_token_upscaler = hf_token_upscaler or HF_TOKEN_UPSCALER |
|
|
|
|
|
self.qwen_client = Client("K00B404/HugChatWrap", hf_token=self.hf_token) |
|
self.client = AsyncInferenceClient() |
|
|
|
|
|
self.loaded_loras = [] |
|
self.loras = [ |
|
"Shakker-Labs/FLUX.1-dev-LoRA-add-details", |
|
"XLabs-AI/flux-RealismLora", |
|
"enhanceaiteam/Flux-uncensored" |
|
] |
|
self.loaded_loras.extend(self.loras) |
|
|
|
|
|
def enable_lora(self, lora_add, basemodel): |
|
return basemodel if not lora_add else lora_add |
|
|
|
|
|
async def generate_image(self, prompt, model, lora_word, width, height, scales, steps, seed): |
|
try: |
|
if seed == -1: |
|
seed = random.randint(0, MAX_SEED) |
|
seed = int(seed) |
|
|
|
|
|
text = str(Translator().translate(prompt, 'English')) + "," + lora_word |
|
|
|
|
|
image = await self.client.text_to_image( |
|
prompt=text, |
|
height=height, |
|
width=width, |
|
guidance_scale=scales, |
|
num_inference_steps=steps, |
|
model=model |
|
) |
|
|
|
return image, seed |
|
except Exception as e: |
|
print(f"Error generating image: {e}") |
|
return None, None |
|
|
|
|
|
def upscale_image(self, prompt, img_path, upscale_factor): |
|
try: |
|
|
|
upscale_client = Client("finegrain/finegrain-image-enhancer", hf_token=self.hf_token_upscaler) |
|
result = upscale_client.predict( |
|
input_image=handle_file(img_path), |
|
prompt=prompt, |
|
negative_prompt="worst quality, low quality, normal quality", |
|
upscale_factor=upscale_factor, |
|
controlnet_scale=0.6, |
|
controlnet_decay=1, |
|
condition_scale=6, |
|
denoise_strength=0.35, |
|
num_inference_steps=18, |
|
solver="DDIM", |
|
api_name="/process" |
|
) |
|
return result[1] |
|
except Exception as e: |
|
print(f"Error scaling image: {e}") |
|
return None |
|
|
|
|
|
async def gen_image(self, prompt, basemodel, width, height, scales, steps, seed, upscale_factor, process_upscale, lora_model, process_lora): |
|
model = self.enable_lora(lora_model, basemodel) if process_lora else basemodel |
|
|
|
image, seed = await self.generate_image(prompt, model, "", width, height, scales, steps, seed) |
|
|
|
if image is None: |
|
print("Image generation failed.") |
|
return [] |
|
|
|
image_path = "temp_image.jpg" |
|
image.save(image_path, format="JPEG") |
|
|
|
upscale_image_path = None |
|
if process_upscale: |
|
upscale_image_path = self.upscale_image(prompt, image_path, upscale_factor) |
|
if upscale_image_path and os.path.exists(upscale_image_path): |
|
return [image_path, upscale_image_path] |
|
|
|
return [image_path] |