K00B404 commited on
Commit
06e1fc4
·
verified ·
1 Parent(s): 7e008d6

Create lorify.py

Browse files
Files changed (1) hide show
  1. lorify.py +105 -0
lorify.py ADDED
@@ -0,0 +1,105 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import random
3
+ import numpy as np
4
+ from huggingface_hub import AsyncInferenceClient
5
+ from translatepy import Translator
6
+ from gradio_client import Client, handle_file
7
+ from PIL import Image
8
+
9
+ # Constants
10
+ MAX_SEED = np.iinfo(np.int32).max
11
+ HF_TOKEN = os.getenv('HF_TOKEN') # Set the environment variable for HF_TOKEN
12
+ HF_TOKEN_UPSCALER = os.getenv('HF_TOKEN_UPSCALER') # Set the environment variable for HF_TOKEN_UPSCALER
13
+
14
+
15
+ class Lorify:
16
+ def __init__(self, hf_token=None, hf_token_upscaler=None):
17
+ # Optionally load tokens from environment if not passed
18
+ self.hf_token = hf_token or HF_TOKEN
19
+ self.hf_token_upscaler = hf_token_upscaler or HF_TOKEN_UPSCALER
20
+
21
+ # Initialize clients
22
+ self.qwen_client = Client("K00B404/HugChatWrap", hf_token=self.hf_token)
23
+ self.client = AsyncInferenceClient()
24
+
25
+ # List of available LoRAs (replace with your LoRA repo names or paths)
26
+ self.loaded_loras = []
27
+ self.loras = [
28
+ "Shakker-Labs/FLUX.1-dev-LoRA-add-details",
29
+ "XLabs-AI/flux-RealismLora",
30
+ "enhanceaiteam/Flux-uncensored"
31
+ ]
32
+ self.loaded_loras.extend(self.loras)
33
+
34
+ # Enable or disable LoRA
35
+ def enable_lora(self, lora_add, basemodel):
36
+ return basemodel if not lora_add else lora_add
37
+
38
+ # Generate image function
39
+ async def generate_image(self, prompt, model, lora_word, width, height, scales, steps, seed):
40
+ try:
41
+ if seed == -1:
42
+ seed = random.randint(0, MAX_SEED)
43
+ seed = int(seed)
44
+
45
+ # Translate prompt
46
+ text = str(Translator().translate(prompt, 'English')) + "," + lora_word
47
+
48
+ # Generate image
49
+ image = await self.client.text_to_image(
50
+ prompt=text,
51
+ height=height,
52
+ width=width,
53
+ guidance_scale=scales,
54
+ num_inference_steps=steps,
55
+ model=model
56
+ )
57
+
58
+ return image, seed
59
+ except Exception as e:
60
+ print(f"Error generating image: {e}")
61
+ return None, None
62
+
63
+ # Upscale image function
64
+ def upscale_image(self, prompt, img_path, upscale_factor):
65
+ try:
66
+ # Initialize the upscale client
67
+ upscale_client = Client("finegrain/finegrain-image-enhancer", hf_token=self.hf_token_upscaler)
68
+ result = upscale_client.predict(
69
+ input_image=handle_file(img_path),
70
+ prompt=prompt,
71
+ negative_prompt="worst quality, low quality, normal quality",
72
+ upscale_factor=upscale_factor,
73
+ controlnet_scale=0.6,
74
+ controlnet_decay=1,
75
+ condition_scale=6,
76
+ denoise_strength=0.35,
77
+ num_inference_steps=18,
78
+ solver="DDIM",
79
+ api_name="/process"
80
+ )
81
+ return result[1] # Return upscale image path
82
+ except Exception as e:
83
+ print(f"Error scaling image: {e}")
84
+ return None
85
+
86
+ # Main method to generate and optionally upscale image
87
+ async def gen_image(self, prompt, basemodel, width, height, scales, steps, seed, upscale_factor, process_upscale, lora_model, process_lora):
88
+ model = self.enable_lora(lora_model, basemodel) if process_lora else basemodel
89
+
90
+ image, seed = await self.generate_image(prompt, model, "", width, height, scales, steps, seed)
91
+
92
+ if image is None:
93
+ print("Image generation failed.")
94
+ return []
95
+
96
+ image_path = "temp_image.jpg"
97
+ image.save(image_path, format="JPEG")
98
+
99
+ upscale_image_path = None
100
+ if process_upscale:
101
+ upscale_image_path = self.upscale_image(prompt, image_path, upscale_factor)
102
+ if upscale_image_path and os.path.exists(upscale_image_path):
103
+ return [image_path, upscale_image_path]
104
+
105
+ return [image_path]