Update app.py
Browse files
app.py
CHANGED
@@ -44,7 +44,12 @@ def generate_character_description(character_prompt, system_message = """
|
|
44 |
return result
|
45 |
except Exception as e:
|
46 |
return f"Error generating description: {str(e)}"
|
47 |
-
|
|
|
|
|
|
|
|
|
|
|
48 |
# Function to generate image
|
49 |
async def generate_image(prompt, model, lora_word, width, height, scales, steps, seed):
|
50 |
try:
|
@@ -53,7 +58,7 @@ async def generate_image(prompt, model, lora_word, width, height, scales, steps,
|
|
53 |
seed = int(seed)
|
54 |
|
55 |
print(f"[-] Menerjemahkan prompt: {prompt}")
|
56 |
-
|
57 |
|
58 |
print(f"[-] Generating image with prompt: {text}, model: {model}")
|
59 |
client = AsyncInferenceClient()
|
@@ -66,18 +71,18 @@ async def generate_image(prompt, model, lora_word, width, height, scales, steps,
|
|
66 |
# Function to upscale image
|
67 |
def get_upscale_finegrain(prompt, img_path, upscale_factor):
|
68 |
try:
|
69 |
-
print(f"[-]
|
70 |
client = Client("finegrain/finegrain-image-enhancer", hf_token=HF_TOKEN_UPSCALER)
|
71 |
result = client.predict(
|
72 |
input_image=handle_file(img_path),
|
73 |
prompt=prompt,
|
74 |
negative_prompt="worst quality, low quality, normal quality",
|
75 |
upscale_factor=upscale_factor,
|
76 |
-
controlnet_scale=0.
|
77 |
controlnet_decay=1,
|
78 |
condition_scale=6,
|
79 |
-
denoise_strength=0.
|
80 |
-
num_inference_steps=
|
81 |
solver="DDIM",
|
82 |
api_name="/process"
|
83 |
)
|
@@ -112,7 +117,7 @@ async def gen(prompt, basemodel, width, height, scales, steps, seed, upscale_fac
|
|
112 |
print(f"[-] Proses upscaling selesai. Gambar tersimpan di: {upscale_image_path}")
|
113 |
return [image_path, upscale_image_path] # Return both images
|
114 |
else:
|
115 |
-
print("[-] Upscaling
|
116 |
|
117 |
return [image_path]
|
118 |
|
@@ -162,52 +167,49 @@ with gr.Blocks(css=css, theme=IndonesiaTheme()) as WallpaperFluxMaker:
|
|
162 |
# Column 1: Input prompt, LoRA, and base model
|
163 |
with gr.Column(scale=1, elem_id="col-left"):
|
164 |
prompt = gr.Textbox(
|
165 |
-
label="๐
|
166 |
-
placeholder="
|
167 |
elem_id="textbox-prompt"
|
168 |
)
|
169 |
|
170 |
basemodel_choice = gr.Dropdown(
|
171 |
-
label="๐ผ๏ธ
|
172 |
choices=[
|
173 |
-
"black-forest-labs/FLUX.1-schnell",
|
174 |
-
"black-forest-labs/FLUX.1-
|
175 |
-
"
|
176 |
-
"dataautogpt3/FLUX-SyntheticAnime",
|
177 |
-
"Shakker-Labs/FLUX.1-dev-LoRA-AntiBlur"
|
178 |
"Shakker-Labs/FLUX.1-dev-ControlNet-Union-Pro",
|
179 |
"Shakker-Labs/FLUX.1-dev-LoRA-add-details",
|
180 |
-
"city96/FLUX.1-
|
181 |
],
|
182 |
value="black-forest-labs/FLUX.1-schnell"
|
183 |
)
|
184 |
|
185 |
lora_model_choice = gr.Dropdown(
|
186 |
-
label="๐จ
|
187 |
choices=[
|
188 |
"Shakker-Labs/FLUX.1-dev-LoRA-add-details",
|
189 |
"XLabs-AI/flux-RealismLora",
|
190 |
-
"enhanceaiteam/Flux-uncensored"
|
191 |
-
|
192 |
-
]+loaded_loras,
|
193 |
value="XLabs-AI/flux-RealismLora"
|
194 |
)
|
195 |
|
196 |
-
process_lora =gr.Checkbox(label="๐จ
|
197 |
-
process_upscale = gr.Checkbox(label="๐
|
198 |
-
upscale_factor = gr.Radio(label="๐
|
199 |
|
200 |
# Column 2: Advanced options (always open)
|
201 |
with gr.Column(scale=1, elem_id="col-right"):
|
202 |
-
with gr.Accordion(label="โ๏ธ
|
203 |
-
width = gr.Slider(label="
|
204 |
-
height = gr.Slider(label="
|
205 |
-
scales = gr.Slider(label="
|
206 |
-
steps = gr.Slider(label="
|
207 |
seed = gr.Number(label="Seed", value=-1)
|
208 |
|
209 |
# Button to generate image
|
210 |
-
btn = gr.Button("๐
|
211 |
|
212 |
# Running the `gen` function when "Generate" button is pressed
|
213 |
btn.click(fn=gen, inputs=[
|
@@ -215,4 +217,4 @@ with gr.Blocks(css=css, theme=IndonesiaTheme()) as WallpaperFluxMaker:
|
|
215 |
], outputs=output_res)
|
216 |
|
217 |
# Launching the Gradio app
|
218 |
-
WallpaperFluxMaker.queue(api_open=False).launch(show_api=
|
|
|
44 |
return result
|
45 |
except Exception as e:
|
46 |
return f"Error generating description: {str(e)}"
|
47 |
+
|
48 |
+
# Function to enable LoRA if selected
|
49 |
+
def enable_lora(lora_add, basemodel):
|
50 |
+
print(f"[-] Menentukan model: LoRA {'diaktifkan' if lora_add else 'tidak diaktifkan'}, model dasar: {basemodel}")
|
51 |
+
return basemodel if not lora_add else lora_add
|
52 |
+
|
53 |
# Function to generate image
|
54 |
async def generate_image(prompt, model, lora_word, width, height, scales, steps, seed):
|
55 |
try:
|
|
|
58 |
seed = int(seed)
|
59 |
|
60 |
print(f"[-] Menerjemahkan prompt: {prompt}")
|
61 |
+
text = str(Translator().translate(prompt, 'English')) + "," + lora_word
|
62 |
|
63 |
print(f"[-] Generating image with prompt: {text}, model: {model}")
|
64 |
client = AsyncInferenceClient()
|
|
|
71 |
# Function to upscale image
|
72 |
def get_upscale_finegrain(prompt, img_path, upscale_factor):
|
73 |
try:
|
74 |
+
print(f"[-] Memulai proses upscaling dengan faktor {upscale_factor} untuk gambar {img_path}")
|
75 |
client = Client("finegrain/finegrain-image-enhancer", hf_token=HF_TOKEN_UPSCALER)
|
76 |
result = client.predict(
|
77 |
input_image=handle_file(img_path),
|
78 |
prompt=prompt,
|
79 |
negative_prompt="worst quality, low quality, normal quality",
|
80 |
upscale_factor=upscale_factor,
|
81 |
+
controlnet_scale=0.6,
|
82 |
controlnet_decay=1,
|
83 |
condition_scale=6,
|
84 |
+
denoise_strength=0.35,
|
85 |
+
num_inference_steps=18,
|
86 |
solver="DDIM",
|
87 |
api_name="/process"
|
88 |
)
|
|
|
117 |
print(f"[-] Proses upscaling selesai. Gambar tersimpan di: {upscale_image_path}")
|
118 |
return [image_path, upscale_image_path] # Return both images
|
119 |
else:
|
120 |
+
print("[-] Upscaling gagal, jalur gambar upscale tidak ditemukan.")
|
121 |
|
122 |
return [image_path]
|
123 |
|
|
|
167 |
# Column 1: Input prompt, LoRA, and base model
|
168 |
with gr.Column(scale=1, elem_id="col-left"):
|
169 |
prompt = gr.Textbox(
|
170 |
+
label="๐ Deskripsi Gambar",
|
171 |
+
placeholder="Tuliskan prompt Anda dalam bahasa apapun, yang akan langsung diterjemahkan ke bahasa Inggris.",
|
172 |
elem_id="textbox-prompt"
|
173 |
)
|
174 |
|
175 |
basemodel_choice = gr.Dropdown(
|
176 |
+
label="๐ผ๏ธ Pilih Model",
|
177 |
choices=[
|
178 |
+
"black-forest-labs/FLUX.1-schnell",
|
179 |
+
"black-forest-labs/FLUX.1-DEV",
|
180 |
+
"enhanceaiteam/Flux-uncensored",
|
|
|
|
|
181 |
"Shakker-Labs/FLUX.1-dev-ControlNet-Union-Pro",
|
182 |
"Shakker-Labs/FLUX.1-dev-LoRA-add-details",
|
183 |
+
"city96/FLUX.1-dev-gguf"
|
184 |
],
|
185 |
value="black-forest-labs/FLUX.1-schnell"
|
186 |
)
|
187 |
|
188 |
lora_model_choice = gr.Dropdown(
|
189 |
+
label="๐จ Pilih LoRA",
|
190 |
choices=[
|
191 |
"Shakker-Labs/FLUX.1-dev-LoRA-add-details",
|
192 |
"XLabs-AI/flux-RealismLora",
|
193 |
+
"enhanceaiteam/Flux-uncensored"
|
194 |
+
],
|
|
|
195 |
value="XLabs-AI/flux-RealismLora"
|
196 |
)
|
197 |
|
198 |
+
process_lora = gr.Checkbox(label="๐จ Aktifkan LoRA")
|
199 |
+
process_upscale = gr.Checkbox(label="๐ Aktifkan Peningkatan Resolusi")
|
200 |
+
upscale_factor = gr.Radio(label="๐ Faktor Peningkatan Resolusi", choices=[2, 4, 8], value=2)
|
201 |
|
202 |
# Column 2: Advanced options (always open)
|
203 |
with gr.Column(scale=1, elem_id="col-right"):
|
204 |
+
with gr.Accordion(label="โ๏ธ Opsi Lanjutan", open=True):
|
205 |
+
width = gr.Slider(label="Lebar", minimum=512, maximum=1280, step=8, value=1280)
|
206 |
+
height = gr.Slider(label="Tinggi", minimum=512, maximum=1280, step=8, value=768)
|
207 |
+
scales = gr.Slider(label="Skala", minimum=1, maximum=20, step=1, value=8)
|
208 |
+
steps = gr.Slider(label="Langkah", minimum=1, maximum=100, step=1, value=8)
|
209 |
seed = gr.Number(label="Seed", value=-1)
|
210 |
|
211 |
# Button to generate image
|
212 |
+
btn = gr.Button("๐ Buat Gambar", elem_id="generate-btn")
|
213 |
|
214 |
# Running the `gen` function when "Generate" button is pressed
|
215 |
btn.click(fn=gen, inputs=[
|
|
|
217 |
], outputs=output_res)
|
218 |
|
219 |
# Launching the Gradio app
|
220 |
+
WallpaperFluxMaker.queue(api_open=False).launch(show_api=False)
|