K00B404 commited on
Commit
a6187cf
·
verified ·
1 Parent(s): 2fe5309

Delete app.py

Browse files
Files changed (1) hide show
  1. app.py +0 -91
app.py DELETED
@@ -1,91 +0,0 @@
1
- import os
2
- import gradio as gr
3
- import numpy as np
4
- import random
5
- from huggingface_hub import AsyncInferenceClient
6
- from translatepy import Translator
7
- import requests
8
- import re
9
- import asyncio
10
- from PIL import Image
11
- from gradio_client import Client, handle_file
12
- from huggingface_hub import login
13
- from gradio_imageslider import ImageSlider
14
-
15
- MAX_SEED = np.iinfo(np.int32).max
16
- HF_TOKEN = os.environ.get("HF_TOKEN")
17
- HF_TOKEN_UPSCALER = os.environ.get("HF_TOKEN_UPSCALER")
18
-
19
- def enable_lora(lora_add, basemodel):
20
- return basemodel if not lora_add else lora_add
21
-
22
- async def generate_image(prompt, model, lora_word, width, height, scales, steps, seed):
23
- try:
24
- if seed == -1:
25
- seed = random.randint(0, MAX_SEED)
26
- seed = int(seed)
27
- text = str(Translator().translate(prompt, 'English')) + "," + lora_word
28
- client = AsyncInferenceClient()
29
- image = await client.text_to_image(prompt=text, height=height, width=width, guidance_scale=scales, num_inference_steps=steps, model=model)
30
- return image, seed
31
- except Exception as e:
32
- print(f"Error generando imagen: {e}")
33
- return None, None
34
-
35
- def get_upscale_finegrain(prompt, img_path, upscale_factor):
36
- try:
37
- client = Client("finegrain/finegrain-image-enhancer", hf_token=HF_TOKEN_UPSCALER)
38
- result = client.predict(input_image=handle_file(img_path), prompt=prompt, negative_prompt="", seed=42, upscale_factor=upscale_factor, controlnet_scale=0.6, controlnet_decay=1, condition_scale=6, tile_width=112, tile_height=144, denoise_strength=0.35, num_inference_steps=18, solver="DDIM", api_name="/process")
39
- return result[1]
40
- except Exception as e:
41
- print(f"Error escalando imagen: {e}")
42
- return None
43
-
44
- async def gen(prompt, basemodel, width, height, scales, steps, seed, upscale_factor, process_upscale, lora_model, process_lora):
45
- model = enable_lora(lora_model, basemodel) if process_lora else basemodel
46
- image, seed = await generate_image(prompt, model, "", width, height, scales, steps, seed)
47
- if image is None:
48
- return [None, None]
49
-
50
- image_path = "temp_image.jpg"
51
- image.save(image_path, format="JPEG")
52
-
53
- if process_upscale:
54
- upscale_image_path = get_upscale_finegrain(prompt, image_path, upscale_factor)
55
- if upscale_image_path is not None:
56
- upscale_image = Image.open(upscale_image_path)
57
- upscale_image.save("upscale_image.jpg", format="JPEG")
58
- return [image_path, "upscale_image.jpg"]
59
- else:
60
- print("Error: La ruta de la imagen escalada es None")
61
- return [image_path, image_path]
62
- else:
63
- return [image_path, image_path]
64
-
65
- css = """
66
- #col-container{ margin: 0 auto; max-width: 1024px;}
67
- """
68
-
69
- with gr.Blocks(css=css, theme="Nymbo/Nymbo_Theme") as demo:
70
- with gr.Column(elem_id="col-container"):
71
- with gr.Row():
72
- with gr.Column(scale=3):
73
- output_res = ImageSlider(label="Flux / Upscaled")
74
- with gr.Column(scale=2):
75
- prompt = gr.Textbox(label="Descripción de imágen")
76
- basemodel_choice = gr.Dropdown(label="Modelo", choices=["nerijs/dark-fantasy-illustration-flux","black-forest-labs/FLUX.1-schnell", "black-forest-labs/FLUX.1-DEV", "enhanceaiteam/Flux-uncensored", "Shakker-Labs/FLUX.1-dev-ControlNet-Union-Pro", "Shakker-Labs/FLUX.1-dev-LoRA-add-details", "city96/FLUX.1-dev-gguf"], value="black-forest-labs/FLUX.1-schnell")
77
- lora_model_choice = gr.Dropdown(label="LORA", choices=["Shakker-Labs/FLUX.1-dev-LoRA-add-details", "XLabs-AI/flux-RealismLora", "enhanceaiteam/Flux-uncensored"], value="XLabs-AI/flux-RealismLora")
78
- process_lora = gr.Checkbox(label="Procesar LORA")
79
- process_upscale = gr.Checkbox(label="Procesar Escalador")
80
- upscale_factor = gr.Radio(label="Factor de Escala", choices=[2, 4, 8], value=2)
81
-
82
- with gr.Accordion(label="Opciones Avanzadas", open=False):
83
- width = gr.Slider(label="Ancho", minimum=512, maximum=1280, step=8, value=1280)
84
- height = gr.Slider(label="Alto", minimum=512, maximum=1280, step=8, value=768)
85
- scales = gr.Slider(label="Escalado", minimum=1, maximum=20, step=1, value=8)
86
- steps = gr.Slider(label="Pasos", minimum=1, maximum=100, step=1, value=8)
87
- seed = gr.Number(label="Semilla", value=-1)
88
-
89
- btn = gr.Button("Generar")
90
- btn.click(fn=gen, inputs=[prompt, basemodel_choice, width, height, scales, steps, seed, upscale_factor, process_upscale, lora_model_choice, process_lora], outputs=output_res,)
91
- demo.launch()