import os import random import numpy as np from huggingface_hub import AsyncInferenceClient from translatepy import Translator from gradio_client import Client, handle_file from PIL import Image # Constants MAX_SEED = np.iinfo(np.int32).max HF_TOKEN = os.getenv('HF_TOKEN') # Set the environment variable for HF_TOKEN HF_TOKEN_UPSCALER = os.getenv('HF_TOKEN') # Set the environment variable for HF_TOKEN_UPSCALER class Lorify: def __init__(self, hf_token=None, hf_token_upscaler=None): # Optionally load tokens from environment if not passed self.hf_token = hf_token or HF_TOKEN self.hf_token_upscaler = hf_token_upscaler or HF_TOKEN_UPSCALER # Initialize clients self.qwen_client = Client("K00B404/HugChatWrap", hf_token=self.hf_token) self.client = AsyncInferenceClient() # List of available LoRAs (replace with your LoRA repo names or paths) self.loaded_loras = [] self.loras = [ "Shakker-Labs/FLUX.1-dev-LoRA-add-details", "XLabs-AI/flux-RealismLora", "enhanceaiteam/Flux-uncensored" ] self.loaded_loras.extend(self.loras) # Enable or disable LoRA def enable_lora(self, lora_add, basemodel): return basemodel if not lora_add else lora_add # Generate image function async def generate_image(self, prompt, model, lora_word, width, height, scales, steps, seed): try: if seed == -1: seed = random.randint(0, MAX_SEED) seed = int(seed) # Translate prompt text = str(Translator().translate(prompt, 'English')) + "," + lora_word # Generate image image = await self.client.text_to_image( prompt=text, height=height, width=width, guidance_scale=scales, num_inference_steps=steps, model=model ) return image, seed except Exception as e: print(f"Error generating image: {e}") return None, None # Upscale image function def upscale_image(self, prompt, img_path, upscale_factor): try: # Initialize the upscale client upscale_client = Client("finegrain/finegrain-image-enhancer", hf_token=self.hf_token_upscaler) result = upscale_client.predict( input_image=handle_file(img_path), prompt=prompt, negative_prompt="worst quality, low quality, normal quality", upscale_factor=upscale_factor, controlnet_scale=0.6, controlnet_decay=1, condition_scale=6, denoise_strength=0.35, num_inference_steps=18, solver="DDIM", api_name="/process" ) return result[1] # Return upscale image path except Exception as e: print(f"Error scaling image: {e}") return None # Main method to generate and optionally upscale image async def gen_image(self, prompt, basemodel, width, height, scales, steps, seed, upscale_factor, process_upscale, lora_model, process_lora): model = self.enable_lora(lora_model, basemodel) if process_lora else basemodel image, seed = await self.generate_image(prompt, model, "", width, height, scales, steps, seed) if image is None: print("Image generation failed.") return [] image_path = "temp_image.jpg" image.save(image_path, format="JPEG") upscale_image_path = None if process_upscale: upscale_image_path = self.upscale_image(prompt, image_path, upscale_factor) if upscale_image_path and os.path.exists(upscale_image_path): return [image_path, upscale_image_path] return [image_path]