import os import gradio as gr import numpy as np import random from huggingface_hub import AsyncInferenceClient from translatepy import Translator from gradio_client import Client, handle_file from PIL import Image from pathlib import Path MAX_SEED = np.iinfo(np.int32).max HF_TOKEN = os.getenv('HF_TOKEN') HF_TOKEN_UPSCALER = os.getenv('HF_TOKEN') css2=""" /* Apply dark theme (black background) */ body { background-color: #000000; color: #FFFFFF; } /* Style the Gradio interface */ .gradio-container { background-color: #000000; border: 2px solid #FFFFFF; box-shadow: 0 0 10px rgba(255, 255, 255, 0.1); } /* Title and markdown text */ .gradio-markdown h1, .gradio-markdown h2, .gradio-markdown h3 { color: #FFFFFF; } /* Input boxes (e.g., Textbox) */ .gradio-textbox input, .gradio-textbox textarea { background-color: #222222; color: #FFFFFF; border: 2px solid #444444; border-radius: 8px; padding: 10px; font-size: 16px; box-shadow: 0 0 5px rgba(255, 255, 255, 0.2); transition: 0.3s ease-in-out; } .gradio-textbox input:focus, .gradio-textbox textarea:focus { border-color: #ff00ff; box-shadow: 0 0 10px rgba(255, 0, 255, 0.7); } /* Buttons */ .gradio-button { background: linear-gradient(45deg, #ff007f, #ff00ff, #00ff00, #00ffff, #0000ff, #ff8c00); color: white; font-weight: bold; border: 2px solid #444444; border-radius: 10px; padding: 12px 20px; box-shadow: 0 0 15px rgba(255, 255, 255, 0.3); cursor: pointer; transition: 0.3s ease-in-out; font-size: 16px; text-transform: uppercase; } .gradio-button:hover { background: linear-gradient(45deg, #ff8c00, #00ffff, #ff00ff, #ff007f, #0000ff, #00ff00); box-shadow: 0 0 20px rgba(255, 255, 255, 0.5); } /* Dropdown */ .gradio-dropdown select { background-color: #222222; color: #FFFFFF; border: 2px solid #444444; border-radius: 8px; padding: 8px 12px; box-shadow: 0 0 5px rgba(255, 255, 255, 0.2); } .gradio-dropdown select:focus { border-color: #ff00ff; box-shadow: 0 0 10px rgba(255, 0, 255, 0.7); } /* Chatbot box */ .gradio-chatbot { background-color: #222222; border: 2px solid #444444; color: #FFFFFF; padding: 15px; border-radius: 12px; box-shadow: 0 0 10px rgba(255, 255, 255, 0.2); } /* Slider */ .gradio-slider input { background-color: #222222; border: 2px solid #444444; color: #FFFFFF; border-radius: 8px; padding: 10px; box-shadow: 0 0 5px rgba(255, 255, 255, 0.2); } .gradio-slider input:focus { border-color: #ff00ff; box-shadow: 0 0 10px rgba(255, 0, 255, 0.7); } /* Accordion */ .gradio-accordion { background-color: #222222; border: 2px solid #444444; color: #FFFFFF; padding: 15px; border-radius: 12px; box-shadow: 0 0 10px rgba(255, 255, 255, 0.2); } .gradio-accordion-button { background-color: #444444; color: #FFFFFF; border: none; border-radius: 8px; padding: 8px 16px; box-shadow: 0 0 5px rgba(255, 255, 255, 0.1); transition: 0.3s ease-in-out; } .gradio-accordion-button:hover { background-color: #ff00ff; box-shadow: 0 0 15px rgba(255, 0, 255, 0.5); } /* General hover effect for all Gradio elements */ .gradio-container *:hover { box-shadow: 0 0 10px rgba(255, 255, 255, 0.5); } /* Animation for glowing neon effect */ @keyframes neon { 0% { text-shadow: 0 0 5px #ff0000, 0 0 10px #ff0000, 0 0 15px #ff0000, 0 0 20px #ff0000, 0 0 25px #ff0000, 0 0 30px #ff0000; } 50% { text-shadow: 0 0 5px #00ff00, 0 0 10px #00ff00, 0 0 15px #00ff00, 0 0 20px #00ff00, 0 0 25px #00ff00, 0 0 30px #00ff00; } 100% { text-shadow: 0 0 5px #0000ff, 0 0 10px #0000ff, 0 0 15px #0000ff, 0 0 20px #0000ff, 0 0 25px #0000ff, 0 0 30px #0000ff; } } /* Apply glowing text effect */ .gradio-container h1, .gradio-container h2, .gradio-container h3, .gradio-container p { animation: neon 1.5s ease-in-out infinite alternate; } """ # Define base models base_models = [ "black-forest-labs/FLUX.1-schnell", "black-forest-labs/FLUX.1-DEV", "Shakker-Labs/FLUX.1-dev-ControlNet-Union-Pro" ] def load_local_loras(lora_directory="lora_models"): """Load loras from local safetensor files""" loras_list_custom = [] if not os.path.exists(lora_directory): os.makedirs(lora_directory) print(f"[-] Created lora directory: {lora_directory}") lora_files = list(Path(lora_directory).glob("*.safetensors")) for lora_file in lora_files: lora_name = lora_file.stem lora_path = str(lora_file.absolute()) loras_list_custom.append({ "name": lora_name, "path": lora_path }) print(f"[-] Loaded {len(loras_list_custom)} local loras") return loras_list_custom # Function to enable LoRA if selected def enable_lora(lora_path, basemodel): print(f"[-] Determining model: LoRA {'enabled' if lora_path else 'disabled'}, base model: {basemodel}") if not lora_path: return basemodel # Configure model with local lora return { "model": basemodel, "lora_weights": lora_path, "lora_scale": 0.75 # Adjust this value as needed } # Function to upscale image def get_upscale_finegrain(prompt, img_path, upscale_factor): try: print(f"[-] Starting upscaling process with factor {upscale_factor} for image {img_path}") client = Client("finegrain/finegrain-image-enhancer", hf_token=HF_TOKEN_UPSCALER) result = client.predict( input_image=handle_file(img_path), prompt=prompt, negative_prompt="worst quality, low quality, normal quality", upscale_factor=upscale_factor, controlnet_scale=0.6, controlnet_decay=1, condition_scale=6, denoise_strength=0.35, num_inference_steps=18, solver="DDIM", api_name="/process" ) print(f"[-] Upscaling successful.") return result[1] # Return upscale image path except Exception as e: print(f"[-] Error scaling image: {e}") return None # Function to generate image async def generate_image(prompt, model_config, lora_word, width, height, scales, steps, seed): try: if seed == -1: seed = random.randint(0, MAX_SEED) seed = int(seed) print(f"[-] Translating prompt: {prompt}") text = str(Translator().translate(prompt, 'English')) + "," + lora_word print(f"[-] Generating image with prompt: {text}") client = AsyncInferenceClient(token=HF_TOKEN) # Handle both simple model string and lora config if isinstance(model_config, dict): print(f"[-] Using model with LoRA: {model_config}") image = await client.text_to_image( prompt=text, height=height, width=width, guidance_scale=scales, num_inference_steps=steps, model=model_config["model"], lora_weights=model_config["lora_weights"], lora_scale=model_config["lora_scale"] ) else: print(f"[-] Using base model: {model_config}") image = await client.text_to_image( prompt=text, height=height, width=width, guidance_scale=scales, num_inference_steps=steps, model=model_config ) return image, seed except Exception as e: print(f"[-] Error generating image: {e}") return None, None # Main function to generate images and optionally upscale async def gen(prompt, basemodel, width, height, scales, steps, seed, upscale_factor, process_upscale, lora_model, process_lora): print(f"[-] Starting image generation with prompt: {prompt}") model = enable_lora(lora_model, basemodel) if process_lora else basemodel print(f"[-] Using model: {model}") image, seed = await generate_image(prompt, model, "", width, height, scales, steps, seed) if image is None: print("[-] Image generation failed.") return [] image_path = "temp_image.jpg" print(f"[-] Saving temporary image to: {image_path}") image.save(image_path, format="JPEG") upscale_image_path = None if process_upscale: print(f"[-] Processing upscaling with factor: {upscale_factor}") upscale_image_path = get_upscale_finegrain(prompt, image_path, upscale_factor) if upscale_image_path is not None and os.path.exists(upscale_image_path): print(f"[-] Upscaling complete. Image saved at: {upscale_image_path}") return [image_path, upscale_image_path] # Return both images else: print("[-] Upscaling failed, upscaled image path not found.") return [image_path] # Load local loras local_loras = load_local_loras() # Creating Gradio interface with gr.Blocks(css=css2, theme=IndonesiaTheme()) as WallpaperFluxMaker: gr.HTML('') with gr.Column(elem_id="col-container"): with gr.Row(): output_res = gr.Gallery( label="⚡ Flux / Upscaled Image ⚡", elem_id="output-res", columns=2, height="auto" ) with gr.Row(): with gr.Column(scale=1, elem_id="col-left"): prompt = gr.Textbox( label="📜 Description", placeholder="Write your prompt in any language, it will be translated to English.", elem_id="textbox-prompt" ) basemodel_choice = gr.Dropdown( label="🖼️ Select Model", choices=base_models, value=base_models[0] ) # Updated to use local lora paths lora_model_choice = gr.Dropdown( label="🎨 Select LoRA", choices=[lora["path"] for lora in local_loras], value=local_loras[0]["path"] if local_loras else None ) process_lora = gr.Checkbox(label="🎨 Enable LoRA") process_upscale = gr.Checkbox(label="🔍 Enable Upscaling") upscale_factor = gr.Radio( label="🔍 Upscale Factor", choices=[2, 4, 8], value=2 ) with gr.Column(scale=1, elem_id="col-right"): with gr.Accordion(label="⚙️ Advanced Options", open=True): width = gr.Slider(label="Width", minimum=512, maximum=1280, step=8, value=1280) height = gr.Slider(label="Height", minimum=512, maximum=1280, step=8, value=768) scales = gr.Slider(label="Scale", minimum=1, maximum=20, step=1, value=8) steps = gr.Slider(label="Steps", minimum=1, maximum=100, step=1, value=8) seed = gr.Number(label="Seed", value=-1) btn = gr.Button("🚀 Generate Image", elem_id="generate-btn") btn.click( fn=gen, inputs=[ prompt, basemodel_choice, width, height, scales, steps, seed, upscale_factor, process_upscale, lora_model_choice, process_lora ], outputs=output_res ) WallpaperFluxMaker.queue(api_open=True).launch(show_api=True)