import os from huggingface_hub import hf_hub_download from typing import List def QuantizeModel(model_name: str, lvl: str = 'q4_0'): """ Function to quantize the model and save it in GGUF format. :param model_name: Path to the model (safetensors file) :param lvl: Quantization level (e.g., 'q4_0') """ gguf_name = model_name.replace('.safetensors', f"_{lvl}.gguf") os.system(f'./bin/sd -M convert -m {model_name} -o {gguf_name} -v --type {lvl}') def download_models(models: List[str]): """ Download models from Hugging Face using their URLs. :param models: List of Hugging Face model URLs """ for model_url in models: os.system(f'curl -L -O {model_url}') # Example usage if __name__ == "__main__": models_to_download = [ "https://huggingface.co/stabilityai/stable-diffusion-3-medium/resolve/main/sd3_medium_incl_clips_t5xxlfp16.safetensors", "https://huggingface.co/CompVis/stable-diffusion-v-1-4-original/resolve/main/sd-v1-4.ckpt", "https://huggingface.co/runwayml/stable-diffusion-v1-5/resolve/main/v1-5-pruned-emaonly.safetensors", "https://huggingface.co/stabilityai/stable-diffusion-2-1/resolve/main/v2-1_768-nonema-pruned.safetensors" ] download_models(models_to_download) # Quantize models model_names = [ 'sd-v1-4.ckpt', 'v1-5-pruned-emaonly.safetensors', 'v2-1_768-nonema-pruned.safetensors', 'sd3_medium_incl_clips_t5xxlfp16.safetensors' ] for model_name in model_names: QuantizeModel(model_name, lvl='q4_0')