Spaces:
Runtime error
Runtime error
import gradio as gr | |
import requests | |
import io | |
import random | |
import os | |
from PIL import Image | |
from deep_translator import GoogleTranslator | |
os.makedirs('assets', exist_ok=True) | |
if not os.path.exist('assets/icon.jpg') | |
os.system("wget -O assets/icon.jpg https://i.pinimg.com/564x/64/49/88/644988c59447eb00286834c2e70fdd6b.jpg") | |
API_URL = "https://api-inference.huggingface.co/models/black-forest-labs/FLUX.1-schnell" | |
timeout = 100 | |
def query(prompt, is_negative=False, steps=30, cfg_scale=7, sampler="DPM++ 2M Karras", seed=-1, strength=0.7, huggingface_api_key=None): | |
# Check if the request is an API call by checking for the presence of the huggingface_api_key | |
is_api_call = huggingface_api_key is not None | |
if is_api_call: | |
# Use the environment variable for the API key in GUI mode | |
API_TOKEN = os.getenv("HF_READ_TOKEN") | |
headers = {"Authorization": f"Bearer {API_TOKEN}"} | |
else: | |
# Validate the API key if it's an API call | |
if huggingface_api_key == "": | |
raise gr.Error("API key is required for API calls.") | |
headers = {"Authorization": f"Bearer {huggingface_api_key}"} | |
if prompt == "" or prompt is None: | |
return None | |
key = random.randint(0, 999) | |
prompt = GoogleTranslator(source='ru', target='en').translate(prompt) | |
print(f'\033[1mGeneration {key} translation:\033[0m {prompt}') | |
prompt = f"{prompt} | ultra detail, ultra elaboration, ultra quality, perfect." | |
print(f'\033[1mGeneration {key}:\033[0m {prompt}') | |
# If seed is -1, generate a random seed and use it | |
if seed == -1: | |
seed = random.randint(1, 1000000000) | |
payload = { | |
"inputs": prompt, | |
"is_negative": is_negative, | |
"steps": steps, | |
"cfg_scale": cfg_scale, | |
"seed": seed, | |
"strength": strength | |
} | |
response = requests.post(API_URL, headers=headers, json=payload, timeout=timeout) | |
if response.status_code != 200: | |
print(f"Error: Failed to get image. Response status: {response.status_code}") | |
print(f"Response content: {response.text}") | |
if response.status_code == 503: | |
raise gr.Error(f"{response.status_code} : The model is being loaded") | |
raise gr.Error(f"{response.status_code}") | |
try: | |
image_bytes = response.content | |
image = Image.open(io.BytesIO(image_bytes)) | |
print(f'\033[1mGeneration {key} completed!\033[0m ({prompt})') | |
# Save the image to a file and return the file path and seed | |
output_path = f"./output_{key}.png" | |
image.save(output_path) | |
return output_path, seed | |
except Exception as e: | |
print(f"Error when trying to open the image: {e}") | |
return None, None | |
css = """ | |
#app-container { | |
max-width: 600px; | |
margin-left: auto; | |
margin-right: auto; | |
} | |
#title-container { | |
display: flex; | |
align-items: center; | |
justify-content: center; | |
} | |
#title-icon { | |
width: 32px; /* Adjust the width of the icon as needed */ | |
height: auto; | |
margin-right: 10px; /* Space between icon and title */ | |
} | |
#title-text { | |
font-size: 24px; /* Adjust font size as needed */ | |
font-weight: bold; | |
} | |
""" | |
with gr.Blocks(theme='Nymbo/Nymbo_Theme', css=css) as app: | |
gr.HTML(""" | |
<center> | |
<div id="title-container"> | |
<img id="title-icon" src="icon.jpg" alt="Icon"> | |
<h1 id="title-text">FLUX.1-Dev</h1> | |
</div> | |
</center> | |
""") | |
gr.HTML("<center><h1>FLUX.1-Dev</h1></center>") | |
with gr.Column(elem_id="app-container"): | |
with gr.Row(): | |
with gr.Column(elem_id="prompt-container"): | |
with gr.Row(): | |
text_prompt = gr.Textbox(label="Prompt", placeholder="Enter a prompt here", lines=2, elem_id="prompt-text-input") | |
with gr.Row(): | |
with gr.Accordion("Advanced Settings", open=False): | |
negative_prompt = gr.Textbox(label="Negative Prompt", placeholder="What should not be in the image", value="(deformed, distorted, disfigured), poorly drawn, bad anatomy, wrong anatomy, extra limb, missing limb, floating limbs, (mutated hands and fingers), disconnected limbs, mutation, mutated, ugly, disgusting, blurry, amputation, misspellings, typos", lines=3, elem_id="negative-prompt-text-input") | |
steps = gr.Slider(label="Sampling steps", value=35, minimum=1, maximum=100, step=1) | |
cfg = gr.Slider(label="CFG Scale", value=7, minimum=1, maximum=20, step=1) | |
method = gr.Radio(label="Sampling method", value="DPM++ 2M Karras", choices=["DPM++ 2M Karras", "DPM++ SDE Karras", "Euler", "Euler a", "Heun", "DDIM"]) | |
strength = gr.Slider(label="Strength", value=0.7, minimum=0, maximum=1, step=0.001) | |
seed = gr.Slider(label="Seed", value=-1, minimum=-1, maximum=1000000000, step=1) | |
huggingface_api_key = gr.Textbox(label="Hugging Face API Key (required for API calls)", placeholder="Enter your Hugging Face API Key here", type="password", elem_id="api-key") | |
with gr.Row(): | |
text_button = gr.Button("Run", variant='primary', elem_id="gen-button") | |
with gr.Row(): | |
# Define two outputs: one for the image file path and one for the seed | |
#image_path_output = gr.Textbox(label="Image File Path", elem_id="gallery") | |
image_output = gr.Image(type="pil", label="Image Output", elem_id="gallery") | |
seed_output = gr.Textbox(label="Seed Used", elem_id="seed-output") | |
# Adjust the click function to include the API key as an input | |
text_button.click(query, inputs=[text_prompt, negative_prompt, steps, cfg, method, seed, strength, huggingface_api_key], outputs=[image_output, seed_output]) | |
app.launch(show_api=True, share=False) |