Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -3,33 +3,38 @@ import requests
|
|
3 |
import io
|
4 |
import random
|
5 |
import os
|
6 |
-
import time
|
7 |
from PIL import Image
|
8 |
from deep_translator import GoogleTranslator
|
9 |
-
import json
|
10 |
|
11 |
-
# Project by Nymbo
|
12 |
API_URL = "https://api-inference.huggingface.co/models/black-forest-labs/FLUX.1-schnell"
|
13 |
-
#API_URL = "https://api-inference.huggingface.co/models/black-forest-labs/FLUX.1-dev"
|
14 |
-
API_TOKEN = os.getenv("HF_READ_TOKEN")
|
15 |
-
headers = {"Authorization": f"Bearer {API_TOKEN}"}
|
16 |
timeout = 100
|
17 |
|
18 |
-
def query(prompt, is_negative=False, steps=30, cfg_scale=7, sampler="DPM++ 2M Karras", seed=-1, strength=0.7):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
19 |
if prompt == "" or prompt is None:
|
20 |
return None
|
21 |
|
22 |
key = random.randint(0, 999)
|
23 |
-
|
24 |
-
API_TOKEN = random.choice([os.getenv("HF_READ_TOKEN")])
|
25 |
-
headers = {"Authorization": f"Bearer {API_TOKEN}"}
|
26 |
-
|
27 |
prompt = GoogleTranslator(source='ru', target='en').translate(prompt)
|
28 |
print(f'\033[1mGeneration {key} translation:\033[0m {prompt}')
|
29 |
|
30 |
prompt = f"{prompt} | ultra detail, ultra elaboration, ultra quality, perfect."
|
31 |
print(f'\033[1mGeneration {key}:\033[0m {prompt}')
|
32 |
-
|
33 |
# If seed is -1, generate a random seed and use it
|
34 |
if seed == -1:
|
35 |
seed = random.randint(1, 1000000000)
|
@@ -55,11 +60,15 @@ def query(prompt, is_negative=False, steps=30, cfg_scale=7, sampler="DPM++ 2M Ka
|
|
55 |
image_bytes = response.content
|
56 |
image = Image.open(io.BytesIO(image_bytes))
|
57 |
print(f'\033[1mGeneration {key} completed!\033[0m ({prompt})')
|
58 |
-
|
59 |
-
|
|
|
|
|
|
|
|
|
60 |
except Exception as e:
|
61 |
print(f"Error when trying to open the image: {e}")
|
62 |
-
return None
|
63 |
|
64 |
css = """
|
65 |
#app-container {
|
@@ -84,12 +93,16 @@ with gr.Blocks(theme='Nymbo/Nymbo_Theme', css=css) as app:
|
|
84 |
method = gr.Radio(label="Sampling method", value="DPM++ 2M Karras", choices=["DPM++ 2M Karras", "DPM++ SDE Karras", "Euler", "Euler a", "Heun", "DDIM"])
|
85 |
strength = gr.Slider(label="Strength", value=0.7, minimum=0, maximum=1, step=0.001)
|
86 |
seed = gr.Slider(label="Seed", value=-1, minimum=-1, maximum=1000000000, step=1)
|
|
|
87 |
|
88 |
with gr.Row():
|
89 |
text_button = gr.Button("Run", variant='primary', elem_id="gen-button")
|
90 |
with gr.Row():
|
91 |
-
|
|
|
|
|
92 |
|
93 |
-
|
|
|
94 |
|
95 |
app.launch(show_api=True, share=False)
|
|
|
3 |
import io
|
4 |
import random
|
5 |
import os
|
|
|
6 |
from PIL import Image
|
7 |
from deep_translator import GoogleTranslator
|
|
|
8 |
|
|
|
9 |
API_URL = "https://api-inference.huggingface.co/models/black-forest-labs/FLUX.1-schnell"
|
|
|
|
|
|
|
10 |
timeout = 100
|
11 |
|
12 |
+
def query(prompt, is_negative=False, steps=30, cfg_scale=7, sampler="DPM++ 2M Karras", seed=-1, strength=0.7, huggingface_api_key=None):
|
13 |
+
# Check if the request is an API call by checking for the presence of the huggingface_api_key
|
14 |
+
is_api_call = huggingface_api_key is not None
|
15 |
+
|
16 |
+
if is_api_call:
|
17 |
+
# Validate the API key if it's an API call
|
18 |
+
if huggingface_api_key == "":
|
19 |
+
raise gr.Error("API key is required for API calls.")
|
20 |
+
|
21 |
+
headers = {"Authorization": f"Bearer {huggingface_api_key}"}
|
22 |
+
else:
|
23 |
+
# Use the environment variable for the API key in GUI mode
|
24 |
+
API_TOKEN = os.getenv("HF_READ_TOKEN")
|
25 |
+
headers = {"Authorization": f"Bearer {API_TOKEN}"}
|
26 |
+
|
27 |
if prompt == "" or prompt is None:
|
28 |
return None
|
29 |
|
30 |
key = random.randint(0, 999)
|
31 |
+
|
|
|
|
|
|
|
32 |
prompt = GoogleTranslator(source='ru', target='en').translate(prompt)
|
33 |
print(f'\033[1mGeneration {key} translation:\033[0m {prompt}')
|
34 |
|
35 |
prompt = f"{prompt} | ultra detail, ultra elaboration, ultra quality, perfect."
|
36 |
print(f'\033[1mGeneration {key}:\033[0m {prompt}')
|
37 |
+
|
38 |
# If seed is -1, generate a random seed and use it
|
39 |
if seed == -1:
|
40 |
seed = random.randint(1, 1000000000)
|
|
|
60 |
image_bytes = response.content
|
61 |
image = Image.open(io.BytesIO(image_bytes))
|
62 |
print(f'\033[1mGeneration {key} completed!\033[0m ({prompt})')
|
63 |
+
|
64 |
+
# Save the image to a file and return the file path and seed
|
65 |
+
output_path = f"./output_{key}.png"
|
66 |
+
image.save(output_path)
|
67 |
+
|
68 |
+
return output_path, seed
|
69 |
except Exception as e:
|
70 |
print(f"Error when trying to open the image: {e}")
|
71 |
+
return None, None
|
72 |
|
73 |
css = """
|
74 |
#app-container {
|
|
|
93 |
method = gr.Radio(label="Sampling method", value="DPM++ 2M Karras", choices=["DPM++ 2M Karras", "DPM++ SDE Karras", "Euler", "Euler a", "Heun", "DDIM"])
|
94 |
strength = gr.Slider(label="Strength", value=0.7, minimum=0, maximum=1, step=0.001)
|
95 |
seed = gr.Slider(label="Seed", value=-1, minimum=-1, maximum=1000000000, step=1)
|
96 |
+
huggingface_api_key = gr.Textbox(label="Hugging Face API Key (required for API calls)", placeholder="Enter your Hugging Face API Key here", type="password", elem_id="api-key")
|
97 |
|
98 |
with gr.Row():
|
99 |
text_button = gr.Button("Run", variant='primary', elem_id="gen-button")
|
100 |
with gr.Row():
|
101 |
+
# Define two outputs: one for the image file path and one for the seed
|
102 |
+
image_output = gr.Textbox(label="Image File Path", elem_id="gallery")
|
103 |
+
seed_output = gr.Textbox(label="Seed Used", elem_id="seed-output")
|
104 |
|
105 |
+
# Adjust the click function to include the API key as an input
|
106 |
+
text_button.click(query, inputs=[text_prompt, negative_prompt, steps, cfg, method, seed, strength, huggingface_api_key], outputs=[image_output, seed_output])
|
107 |
|
108 |
app.launch(show_api=True, share=False)
|