File size: 9,023 Bytes
01798da
fe8891a
 
 
 
 
 
4c6a2c0
fe8891a
297fa26
fe8891a
 
4ee41c4
 
fe8891a
 
 
 
91fe340
297fa26
4cfa403
297fa26
 
 
4cfa403
 
91fe340
27d3fa1
91fe340
 
 
 
 
 
 
 
 
 
27d3fa1
91fe340
 
 
 
 
 
 
297fa26
f2922b7
 
 
 
 
 
 
 
 
 
 
 
 
91fe340
 
 
f2922b7
 
41dab73
f2922b7
 
 
 
 
 
41dab73
297fa26
 
 
44c1772
27d3fa1
91fe340
 
41dab73
 
f2922b7
 
 
 
 
 
41dab73
f2922b7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fe8891a
f2922b7
 
41dab73
f2922b7
 
 
 
fe8891a
41dab73
f2922b7
 
41dab73
fe8891a
 
43b8b23
 
 
 
 
 
 
fd24536
43b8b23
 
 
 
 
4ee41c4
43b8b23
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fe8891a
 
 
 
 
 
 
 
 
 
4ee41c4
 
 
 
 
 
 
 
fe8891a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
297fa26
44c1772
fe8891a
 
 
 
41dab73
fe8891a
41dab73
fe8891a
297fa26
41dab73
fe8891a
41dab73
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219

import gradio as gr
import requests
import io
import random
import os
from PIL import Image
from huggingface_hub import InferenceClient
from deep_translator import GoogleTranslator
from gradio_client import Client

# os.makedirs('assets', exist_ok=True)
if not os.path.exists('icon.png'):
    os.system("wget -O icon.png https://i.pinimg.com/564x/64/49/88/644988c59447eb00286834c2e70fdd6b.jpg")
API_URL_DEV = "https://api-inference.huggingface.co/models/black-forest-labs/FLUX.1-dev"
API_URL = "https://api-inference.huggingface.co/models/black-forest-labs/FLUX.1-schnell"
timeout = 100

def enhance_prompt(prompt, style="photorealistic"):
    client = Client("K00B404/Mistral-Nemo-custom")
    result = client.predict(
        system_prompt="You are a image generation prompt enhancer and must respond only with the enhanced version of the users input prompt",
        user_message=f"###input image generation prompt### {prompt}",
        api_name="/predict"
    )
    return result
    
def mistral_nemo_call(prompt, API_TOKEN, model="mistralai/Mistral-Nemo-Instruct-2407"):
    
    client = InferenceClient(api_key=API_TOKEN)
    system_prompt=f"""
    You are a image generation prompt enhancer specialized in the {style} style. 
    You must respond only with the enhanced version of the users input prompt
    Remember, image generation models can be stimulated by refering to camera 'effect' in the prompt like :4k ,award winning, super details, 35mm lens, hd
    """,
    
    response = ""
    for message in client.chat_completion(
        model=model,
        messages=[{"role": "system", "content": system_prompt},{"role": "user", "content": prompt}],
        max_tokens=500,
        stream=True,
    ):
        response += message.choices[0].delta.content
    return response
    
def query(prompt, is_negative=False, steps=30, cfg_scale=7, sampler="DPM++ 2M Karras", seed=-1, strength=0.7, huggingface_api_key=None, use_dev=False, enhance_prompt_option=False):
    # Determine which API URL to use
    api_url = API_URL_DEV if use_dev else API_URL

    # Check if the request is an API call by checking for the presence of the huggingface_api_key
    is_api_call = huggingface_api_key is not None

    if is_api_call:
        # Use the environment variable for the API key in GUI mode
        API_TOKEN = os.getenv("HF_READ_TOKEN")
    else:
        # Validate the API key if it's an API call
        if huggingface_api_key == "":
            raise gr.Error("API key is required for API calls.")
        API_TOKEN = huggingface_api_key
    
    headers = {"Authorization": f"Bearer {API_TOKEN}"} 

    if prompt == "" or prompt is None:
        return None, None, None

    key = random.randint(0, 999)

    prompt = GoogleTranslator(source='ru', target='en').translate(prompt)
    print(f'\033[1mGeneration {key} translation:\033[0m {prompt}')

    original_prompt = prompt
    if enhance_prompt_option:
        prompt = enhance_prompt(prompt)
        print(f'\033[1mGeneration {key} enhanced prompt:\033[0m {prompt}')
    if use_mistral_nemo:
        prompt = mistral_nemo_call(prompt,API_TOKEN=API_TOKEN)
        print(f'\033[1mGeneration {key} Mistral-Nemo prompt:\033[0m {prompt}')
        
    final_prompt = f"{prompt} | ultra detail, ultra elaboration, ultra quality, perfect."
    print(f'\033[1mGeneration {key}:\033[0m {final_prompt}')

    # If seed is -1, generate a random seed and use it
    if seed == -1:
        seed = random.randint(1, 1000000000)

    payload = {
        "inputs": final_prompt,
        "is_negative": is_negative,
        "steps": steps,
        "cfg_scale": cfg_scale,
        "seed": seed,
        "strength": strength
    }

    response = requests.post(api_url, headers=headers, json=payload, timeout=timeout)
    if response.status_code != 200:
        print(f"Error: Failed to get image. Response status: {response.status_code}")
        print(f"Response content: {response.text}")
        if response.status_code == 503:
            raise gr.Error(f"{response.status_code} : The model is being loaded")
        raise gr.Error(f"{response.status_code}")
    
    try:
        image_bytes = response.content
        image = Image.open(io.BytesIO(image_bytes))
        print(f'\033[1mGeneration {key} completed!\033[0m ({final_prompt})')

        # Save the image to a file and return the file path and seed
        output_path = f"./output_{key}.png"
        image.save(output_path)
        
        return output_path, seed, prompt if enhance_prompt_option else original_prompt
    except Exception as e:
        print(f"Error when trying to open the image: {e}")
        return None, None, None

css = """
body {
    background-image: url('icon.png');
    background-size: cover;
    background-repeat: no-repeat;
    background-attachment: fixed;
}
#app-container {
    background-color: rgba(255, 255, 255, 0.8);  /* semi-transparent white */
    max-width: 600px;
    margin-left: auto;
    margin-right: auto;
    padding: 20px;
    border-radius: 10px;
    box-shadow: 0 0 10px rgba(0,0,0,0.1);
}
#title-container {
    display: flex;
    align-items: center;
    justify-content: center;
}
#title-icon {
    width: 32px;
    height: auto;
    margin-right: 10px;
}
#title-text {
    font-size: 24px;
    font-weight: bold;
}
"""

css1 = """
#app-container {
    max-width: 600px;
    margin-left: auto;
    margin-right: auto;
}
#title-container {
    display: flex;
    align-items: center;
    justify-content: center;
}
#app-container {
    max-width: 600px;
    margin-left: auto;
    margin-right: auto;
    background-color: rgba(255, 255, 255, 0.8);  /* semi-transparent white */
    padding: 20px;
    border-radius: 10px;
}
#title-icon {
    width: 32px; /* Adjust the width of the icon as needed */
    height: auto;
    margin-right: 10px; /* Space between icon and title */
}
#title-text {
    font-size: 24px; /* Adjust font size as needed */
    font-weight: bold;
}
"""

with gr.Blocks(theme='Nymbo/Nymbo_Theme', css=css) as app:
    gr.HTML("""
        <center>
            <div id="title-container">
                <img id="title-icon" src="icon.jpg" alt="Icon">
                <h1 id="title-text">FLUX Capacitor</h1>
            </div>
        </center>
    """)

    with gr.Column(elem_id="app-container"):
        with gr.Row():
            with gr.Column(elem_id="prompt-container"):
                with gr.Row():
                    text_prompt = gr.Textbox(label="Prompt", placeholder="Enter a prompt here", lines=2, elem_id="prompt-text-input")
                with gr.Row():
                    with gr.Accordion("Advanced Settings", open=False):
                        negative_prompt = gr.Textbox(label="Negative Prompt", placeholder="What should not be in the image", value="(deformed, distorted, disfigured), poorly drawn, bad anatomy, wrong anatomy, extra limb, missing limb, floating limbs, (mutated hands and fingers), disconnected limbs, mutation, mutated, ugly, disgusting, blurry, amputation, misspellings, typos", lines=3, elem_id="negative-prompt-text-input")
                        steps = gr.Slider(label="Sampling steps", value=35, minimum=1, maximum=100, step=1)
                        cfg = gr.Slider(label="CFG Scale", value=7, minimum=1, maximum=20, step=1)
                        method = gr.Radio(label="Sampling method", value="DPM++ 2M Karras", choices=["DPM++ 2M Karras", "DPM++ SDE Karras", "Euler", "Euler a", "Heun", "DDIM"])
                        strength = gr.Slider(label="Strength", value=0.7, minimum=0, maximum=1, step=0.001)
                        seed = gr.Slider(label="Seed", value=-1, minimum=-1, maximum=1000000000, step=1)
                        huggingface_api_key = gr.Textbox(label="Hugging Face API Key (required for API calls)", placeholder="Enter your Hugging Face API Key here", type="password", elem_id="api-key")
                        use_dev = gr.Checkbox(label="Use Dev API", value=False, elem_id="use-dev-checkbox")
                        enhance_prompt_option = gr.Checkbox(label="Enhance Prompt", value=False, elem_id="enhance-prompt-checkbox")
                        use_mistral_nemo = gr.Checkbox(label="Use Mistral Nemo", value=False, elem_id="use-mistral-checkbox")
        with gr.Row():
            text_button = gr.Button("Run", variant='primary', elem_id="gen-button")
        with gr.Row():
            image_output = gr.Image(type="pil", label="Image Output", elem_id="gallery")
        with gr.Row():
            seed_output = gr.Textbox(label="Seed Used", elem_id="seed-output")
            final_prompt_output = gr.Textbox(label="Final Prompt", elem_id="final-prompt-output")
        
        # Adjust the click function to include the API key, use_dev, and enhance_prompt_option as inputs
        text_button.click(query, inputs=[text_prompt, negative_prompt, steps, cfg, method, seed, strength, huggingface_api_key, use_dev, enhance_prompt_option], outputs=[image_output, seed_output, final_prompt_output])

app.launch(show_api=True, share=False)