Spaces:
Running
Running
File size: 7,110 Bytes
fe8891a 4195937 fe8891a 4cfa403 4195937 4cfa403 fe8891a 4cfa403 4195937 fe8891a 4195937 fe8891a 4195937 fe8891a 4195937 fe8891a 4195937 fe8891a 4195937 fe8891a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 |
import gradio as gr
import requests
import io
import random
import os
from PIL import Image
from deep_translator import GoogleTranslator
from gradio_client import Client # Import the gradio client for prompt enhancement
# os.makedirs('assets', exist_ok=True)
if not os.path.exists('icon.jpg'):
os.system("wget -O icon.jpg https://i.pinimg.com/564x/64/49/88/644988c59447eb00286834c2e70fdd6b.jpg")
API_URL_DEV = "https://api-inference.huggingface.co/models/black-forest-labs/FLUX.1-dev"
API_URL = "https://api-inference.huggingface.co/models/black-forest-labs/FLUX.1-schnell"
timeout = 100
# Function to set the system prompt once
def set_system_prompt():
client = Client("Qwen/Qwen2.5-72B-Instruct")
result = client.predict(
system="You are Qwen, an image generation prompt enhancer",
api_name="/modify_system_session"
)
print(f"System session modified: {result}")
return result
# Function to enhance the prompt with Qwen model
def enhance_prompt_with_qwen(prompt):
client = Client("Qwen/Qwen2.5-72B-Instruct")
result = client.predict(
query=prompt,
history=[],
system="You are Qwen, an image generation prompt enhancer",
api_name="/model_chat"
)
return result['output'] # Assuming the enhanced prompt is under 'output'
# Image generation query function
def query(prompt, is_negative=False, steps=30, cfg_scale=7, sampler="DPM++ 2M Karras", seed=-1, strength=0.7, huggingface_api_key=None, use_dev=False):
# Set system prompt first
set_system_prompt()
# Enhance the prompt before translation
enhanced_prompt = enhance_prompt_with_qwen(prompt)
# Determine which API URL to use
api_url = API_URL_DEV if use_dev else API_URL
# Check if the request is an API call by checking for the presence of the huggingface_api_key
is_api_call = huggingface_api_key is not None
if is_api_call:
# Use the environment variable for the API key in GUI mode
API_TOKEN = os.getenv("HF_READ_TOKEN")
headers = {"Authorization": f"Bearer {API_TOKEN}"}
else:
# Validate the API key if it's an API call
if huggingface_api_key == "":
raise gr.Error("API key is required for API calls.")
headers = {"Authorization": f"Bearer {huggingface_api_key}"}
if enhanced_prompt == "" or enhanced_prompt is None:
return None
key = random.randint(0, 999)
# Translate the enhanced prompt
enhanced_prompt = GoogleTranslator(source='ru', target='en').translate(enhanced_prompt)
print(f'\033[1mGeneration {key} translation:\033[0m {enhanced_prompt}')
enhanced_prompt = f"{enhanced_prompt} | ultra detail, ultra elaboration, ultra quality, perfect."
print(f'\033[1mGeneration {key}:\033[0m {enhanced_prompt}')
# If seed is -1, generate a random seed and use it
if seed == -1:
seed = random.randint(1, 1000000000)
payload = {
"inputs": enhanced_prompt,
"is_negative": is_negative,
"steps": steps,
"cfg_scale": cfg_scale,
"seed": seed,
"strength": strength
}
response = requests.post(api_url, headers=headers, json=payload, timeout=timeout)
if response.status_code != 200:
print(f"Error: Failed to get image. Response status: {response.status_code}")
print(f"Response content: {response.text}")
if response.status_code == 503:
raise gr.Error(f"{response.status_code} : The model is being loaded")
raise gr.Error(f"{response.status_code}")
try:
image_bytes = response.content
image = Image.open(io.BytesIO(image_bytes))
print(f'\033[1mGeneration {key} completed!\033[0m ({enhanced_prompt})')
# Save the image to a file and return the file path and seed
output_path = f"./output_{key}.png"
image.save(output_path)
return output_path, seed
except Exception as e:
print(f"Error when trying to open the image: {e}")
return None, None
css = """
#app-container {
max-width: 600px;
margin-left: auto;
margin-right: auto;
}
#title-container {
display: flex;
align-items: center;
justify-content: center;
}
#title-icon {
width: 32px; /* Adjust the width of the icon as needed */
height: auto;
margin-right: 10px; /* Space between icon and title */
}
#title-text {
font-size: 24px; /* Adjust font size as needed */
font-weight: bold;
}
"""
with gr.Blocks(theme='Nymbo/Nymbo_Theme', css=css) as app:
gr.HTML("""
<center>
<div id="title-container">
<img id="title-icon" src="icon.jpg" alt="Icon">
<h1 id="title-text">FLUX Capacitor</h1>
</div>
</center>
""")
with gr.Column(elem_id="app-container"):
with gr.Row():
with gr.Column(elem_id="prompt-container"):
with gr.Row():
text_prompt = gr.Textbox(label="Prompt", placeholder="Enter a prompt here", lines=2, elem_id="prompt-text-input")
with gr.Row():
with gr.Accordion("Advanced Settings", open=False):
negative_prompt = gr.Textbox(label="Negative Prompt", placeholder="What should not be in the image", value="(deformed, distorted, disfigured), poorly drawn, bad anatomy, wrong anatomy, extra limb, missing limb, floating limbs, (mutated hands and fingers), disconnected limbs, mutation, mutated, ugly, disgusting, blurry, amputation, misspellings, typos", lines=3, elem_id="negative-prompt-text-input")
steps = gr.Slider(label="Sampling steps", value=35, minimum=1, maximum=100, step=1)
cfg = gr.Slider(label="CFG Scale", value=7, minimum=1, maximum=20, step=1)
method = gr.Radio(label="Sampling method", value="DPM++ 2M Karras", choices=["DPM++ 2M Karras", "DPM++ SDE Karras", "Euler", "Euler a", "Heun", "DDIM"])
strength = gr.Slider(label="Strength", value=0.7, minimum=0, maximum=1, step=0.001)
seed = gr.Slider(label="Seed", value=-1, minimum=-1, maximum=1000000000, step=1)
huggingface_api_key = gr.Textbox(label="Hugging Face API Key (required for API calls)", placeholder="Enter your Hugging Face API Key here", type="password", elem_id="api-key")
use_dev = gr.Checkbox(label="Use Dev API", value=False, elem_id="use-dev-checkbox")
with gr.Row():
text_button = gr.Button("Run", variant='primary', elem_id="gen-button")
with gr.Row():
image_output = gr.Image(type="pil", label="Image Output", elem_id="gallery")
seed_output = gr.Textbox(label="Seed Used", elem_id="seed-output")
# Adjust the click function to include the API key and use_dev as inputs
text_button.click(query, inputs=[text_prompt, negative_prompt, steps, cfg, method, seed, strength, huggingface_api_key, use_dev], outputs=[image_output, seed_output])
app.launch(show_api=True, share=False) |