File size: 7,104 Bytes
fe8891a
 
 
 
 
 
 
4195937
fe8891a
 
 
 
 
 
 
 
4cfa403
 
 
 
 
 
 
 
 
 
 
4195937
 
cb647f0
4195937
 
 
 
 
cb647f0
4195937
4cfa403
fe8891a
4cfa403
 
 
4195937
 
 
fe8891a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4195937
fe8891a
 
 
 
4195937
 
 
fe8891a
4195937
 
fe8891a
 
 
 
 
 
4195937
fe8891a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4195937
fe8891a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
import gradio as gr
import requests
import io
import random
import os
from PIL import Image
from deep_translator import GoogleTranslator
from gradio_client import Client  # Import the gradio client for prompt enhancement

# os.makedirs('assets', exist_ok=True)
if not os.path.exists('icon.jpg'):
    os.system("wget -O icon.jpg https://i.pinimg.com/564x/64/49/88/644988c59447eb00286834c2e70fdd6b.jpg")
API_URL_DEV = "https://api-inference.huggingface.co/models/black-forest-labs/FLUX.1-dev"
API_URL = "https://api-inference.huggingface.co/models/black-forest-labs/FLUX.1-schnell"
timeout = 100

# Function to set the system prompt once
def set_system_prompt():
    client = Client("Qwen/Qwen2.5-72B-Instruct")
    result = client.predict(
        system="You are Qwen, an image generation prompt enhancer",
        api_name="/modify_system_session"
    )
    print(f"System session modified: {result}")
    return result

# Function to enhance the prompt with Qwen model
def enhance_prompt_with_qwen(prompt):
    client = Client("Qwen/Qwen2.5-72B-Instruct")
    result,_,__ = client.predict(
        query=prompt,
        history=[],
        system="You are Qwen, an image generation prompt enhancer",
        api_name="/model_chat"
    )
    return result # Assuming the enhanced prompt is under 'output'

# Image generation query function
def query(prompt, is_negative=False, steps=30, cfg_scale=7, sampler="DPM++ 2M Karras", seed=-1, strength=0.7, huggingface_api_key=None, use_dev=False):
    # Set system prompt first
    set_system_prompt()

    # Enhance the prompt before translation
    enhanced_prompt = enhance_prompt_with_qwen(prompt)

    # Determine which API URL to use
    api_url = API_URL_DEV if use_dev else API_URL

    # Check if the request is an API call by checking for the presence of the huggingface_api_key
    is_api_call = huggingface_api_key is not None

    if is_api_call:
        # Use the environment variable for the API key in GUI mode
        API_TOKEN = os.getenv("HF_READ_TOKEN")
        headers = {"Authorization": f"Bearer {API_TOKEN}"}
    else:
        # Validate the API key if it's an API call
        if huggingface_api_key == "":
            raise gr.Error("API key is required for API calls.")
        headers = {"Authorization": f"Bearer {huggingface_api_key}"}

    if enhanced_prompt == "" or enhanced_prompt is None:
        return None

    key = random.randint(0, 999)

    # Translate the enhanced prompt
    enhanced_prompt = GoogleTranslator(source='ru', target='en').translate(enhanced_prompt)
    print(f'\033[1mGeneration {key} translation:\033[0m {enhanced_prompt}')

    enhanced_prompt = f"{enhanced_prompt} | ultra detail, ultra elaboration, ultra quality, perfect."
    print(f'\033[1mGeneration {key}:\033[0m {enhanced_prompt}')

    # If seed is -1, generate a random seed and use it
    if seed == -1:
        seed = random.randint(1, 1000000000)

    payload = {
        "inputs": enhanced_prompt,
        "is_negative": is_negative,
        "steps": steps,
        "cfg_scale": cfg_scale,
        "seed": seed,
        "strength": strength
    }

    response = requests.post(api_url, headers=headers, json=payload, timeout=timeout)
    if response.status_code != 200:
        print(f"Error: Failed to get image. Response status: {response.status_code}")
        print(f"Response content: {response.text}")
        if response.status_code == 503:
            raise gr.Error(f"{response.status_code} : The model is being loaded")
        raise gr.Error(f"{response.status_code}")
    
    try:
        image_bytes = response.content
        image = Image.open(io.BytesIO(image_bytes))
        print(f'\033[1mGeneration {key} completed!\033[0m ({enhanced_prompt})')

        # Save the image to a file and return the file path and seed
        output_path = f"./output_{key}.png"
        image.save(output_path)
        
        return output_path, seed
    except Exception as e:
        print(f"Error when trying to open the image: {e}")
        return None, None

css = """
#app-container {
    max-width: 600px;
    margin-left: auto;
    margin-right: auto;
}
#title-container {
    display: flex;
    align-items: center;
    justify-content: center;
}
#title-icon {
    width: 32px; /* Adjust the width of the icon as needed */
    height: auto;
    margin-right: 10px; /* Space between icon and title */
}
#title-text {
    font-size: 24px; /* Adjust font size as needed */
    font-weight: bold;
}
"""

with gr.Blocks(theme='Nymbo/Nymbo_Theme', css=css) as app:
    gr.HTML("""
        <center>
            <div id="title-container">
                <img id="title-icon" src="icon.jpg" alt="Icon">
                <h1 id="title-text">FLUX Capacitor</h1>
            </div>
        </center>
    """)

    with gr.Column(elem_id="app-container"):
        with gr.Row():
            with gr.Column(elem_id="prompt-container"):
                with gr.Row():
                    text_prompt = gr.Textbox(label="Prompt", placeholder="Enter a prompt here", lines=2, elem_id="prompt-text-input")
                with gr.Row():
                    with gr.Accordion("Advanced Settings", open=False):
                        negative_prompt = gr.Textbox(label="Negative Prompt", placeholder="What should not be in the image", value="(deformed, distorted, disfigured), poorly drawn, bad anatomy, wrong anatomy, extra limb, missing limb, floating limbs, (mutated hands and fingers), disconnected limbs, mutation, mutated, ugly, disgusting, blurry, amputation, misspellings, typos", lines=3, elem_id="negative-prompt-text-input")
                        steps = gr.Slider(label="Sampling steps", value=35, minimum=1, maximum=100, step=1)
                        cfg = gr.Slider(label="CFG Scale", value=7, minimum=1, maximum=20, step=1)
                        method = gr.Radio(label="Sampling method", value="DPM++ 2M Karras", choices=["DPM++ 2M Karras", "DPM++ SDE Karras", "Euler", "Euler a", "Heun", "DDIM"])
                        strength = gr.Slider(label="Strength", value=0.7, minimum=0, maximum=1, step=0.001)
                        seed = gr.Slider(label="Seed", value=-1, minimum=-1, maximum=1000000000, step=1)
                        huggingface_api_key = gr.Textbox(label="Hugging Face API Key (required for API calls)", placeholder="Enter your Hugging Face API Key here", type="password", elem_id="api-key")
                        use_dev = gr.Checkbox(label="Use Dev API", value=False, elem_id="use-dev-checkbox")

        with gr.Row():
            text_button = gr.Button("Run", variant='primary', elem_id="gen-button")
        with gr.Row():
            image_output = gr.Image(type="pil", label="Image Output", elem_id="gallery")
            seed_output = gr.Textbox(label="Seed Used", elem_id="seed-output")
        
        # Adjust the click function to include the API key and use_dev as inputs
        text_button.click(query, inputs=[text_prompt, negative_prompt, steps, cfg, method, seed, strength, huggingface_api_key, use_dev], outputs=[image_output, seed_output])

app.launch(show_api=True, share=False)