File size: 36,504 Bytes
0061c9d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
import os
import getpass
from uuid import uuid4
import faiss
import numpy as np
import requests
import io
import warnings
import torch
import pickle
import speech_recognition
from git import Repo
from glob import glob
from rich import print as rp
from typing import Union, List, Generator, Any, Mapping, Optional,Dict
from requests.sessions import RequestsCookieJar
from dotenv import load_dotenv, find_dotenv
from langchain import hub
from langchain_core.documents import Document
from langchain.chains.combine_documents import create_stuff_documents_chain
from langchain.chains import create_retrieval_chain
from langchain_community.document_loaders import DirectoryLoader
from langchain.text_splitter import RecursiveCharacterTextSplitter, Language
from langchain_huggingface import HuggingFaceEmbeddings
from langchain_community.vectorstores import Chroma, FAISS
from langchain.vectorstores.base import VectorStore
from langchain.retrievers import MultiQueryRetriever
from langchain.retrievers.self_query.base import SelfQueryRetriever
from langchain.llms import BaseLLM
from langchain.retrievers import ContextualCompressionRetriever
from langchain.retrievers.document_compressors import LLMChainExtractor
from langchain.retrievers.document_compressors import DocumentCompressorPipeline
from langchain_community.document_transformers import EmbeddingsRedundantFilter
from langchain_text_splitters import CharacterTextSplitter
from langchain.retrievers.document_compressors import EmbeddingsFilter

# Data manipulation and analysis
import numpy as np
import pandas as pd
# Plotting and visualization
import plotly.graph_objects as go
import plotly.express as px
from plotly.subplots import make_subplots
import plotly.io as pio
# Machine learning and dimensionality reduction
from sklearn.decomposition import PCA
from sklearn.preprocessing import MinMaxScaler
# Optional: for 3D projections
from scipy.stats import gaussian_kde
# Uncomment the following line if you need Plotly's built-in datasets
# import plotly.data as data


from huggingface_hub import InferenceClient
from hugchat import hugchat
from hugchat.login import Login
from hugchat.message import Message
from hugchat.types.assistant import Assistant
from hugchat.types.model import Model
from hugchat.types.message import MessageNode, Conversation

from sklearn.decomposition import PCA
from sklearn.preprocessing import MinMaxScaler

from TTS.api import TTS
import time
from playsound import playsound
from system_prompts import __all__ as prompts

from profiler import VoiceProfileManager, VoiceProfile

# Example usage
manager = VoiceProfileManager("my_custom_profiles.json")
manager.load_profiles()

# Generate a random profile
new_profile = manager.generate_random_profile()
rp(f"Generated new profile: {new_profile.name}")

# List profiles
manager.list_profiles()

# Save profiles
manager.save_profiles()

load_dotenv(find_dotenv())
warnings.filterwarnings("ignore")
os.environ["USER_AGENT"] = os.getenv("USER_AGENT")
class ChatBotWrapper:
    def __init__(self, chat_bot):
        self.chat_bot = chat_bot
    
    def __call__(self, *args, **kwargs):
        return self.chat_bot(*args, **kwargs)

class UberToolkit:
    def __init__(self, email, password, cookie_path_dir='./cookies/', default_llm=1):
        self.prompts = prompts

        # rp(self.prompts)
        self.email = os.getenv("EMAIL")
        self.password = os.getenv("PASSWD")
        self.default_llm = default_llm
        self.cookie_path_dir = cookie_path_dir
        self.system_prompt = self.prompts['default_rag_prompt']  # default_rag_prompt
        # rp(self.system_prompt)
        self.cookies = self.login()
        self.bot = hugchat.ChatBot(cookies=self.cookies.get_dict(), default_llm=self.default_llm)
        self.bot_wrapper = ChatBotWrapper(self.bot)  # Wrap the ChatBot object
    
        self.repo_url = ''    
        self.conv_id = None
        self.latest_splitter=None
        self.setup_folders()
        self.setup_embeddings()
        self.setup_vector_store()
        self.setup_retrievers()
        self.vector_store = None
        self.compressed_retriever = self.create_high_retrieval_chain()
        self.retriever = self.create_low_retrieval_chain()
        self.setup_tts()
        self.setup_speech_recognition()

    def login(self):
        rp("Attempting to log in...")
        sign = Login(self.email, self.password)
        try:
            cookies = sign.login(cookie_dir_path=self.cookie_path_dir, save_cookies=True)
            rp("Login successful!")
            return cookies
        except Exception as e:
            rp(f"Login failed: {e}")
            rp("Attempting manual login with requests...")
            self.manual_login()
            raise

    def manual_login(self):
        login_url = "https://huggingface.co/login"
        session = requests.Session()
        response = session.get(login_url)
        rp("Response Cookies:", response.cookies)
        rp("Response Content:", response.content.decode())
        
        csrf_token = response.cookies.get('csrf_token')
        if not csrf_token:
            rp("CSRF token not found in cookies.")
            return
        
        login_data = {
            'email': self.email,
            'password': self.password,
            'csrf_token': csrf_token
        }
        
        response = session.post(login_url, data=login_data)
        if response.ok:
            rp("Manual login successful!")
        else:
            rp("Manual login failed!")

    def setup_embeddings(self):
        self.embeddings = HuggingFaceEmbeddings(
            model_name="all-MiniLM-L6-v2",
            model_kwargs={'device': 'cpu'},
            encode_kwargs={'normalize_embeddings': True}
        )


    def setup_retrievers(self, k=5, similarity_threshold=0.76):
        self.retriever = self.vector_store.as_retriever(k=k)
        splitter = self.latest_splitter if self.latest_splitter else CharacterTextSplitter(chunk_size=300, chunk_overlap=0, separator=". ")
        redundant_filter = EmbeddingsRedundantFilter(embeddings=self.embeddings)
        relevant_filter = EmbeddingsFilter(embeddings=self.embeddings, similarity_threshold=similarity_threshold)
        pipeline_compressor = DocumentCompressorPipeline(
            transformers=[splitter, redundant_filter, relevant_filter]
        )
        self.compression_retriever = ContextualCompressionRetriever(base_compressor=pipeline_compressor, base_retriever=self.retriever)

    def create_high_retrieval_chain(self):
        rag_prompt = hub.pull("langchain-ai/retrieval-qa-chat")
        rp(rag_prompt)
        combine_docs_chain = create_stuff_documents_chain(self.bot_wrapper, rag_prompt)
        return create_retrieval_chain(self.compression_retriever, combine_docs_chain)
        #self.low_retrieval_chain = create_retrieval_chain(self.retriever, combine_docs_chain)
    
    def create_low_retrieval_chain(self):  
        rag_prompt = hub.pull("langchain-ai/retrieval-qa-chat")
        combine_docs_chain = create_stuff_documents_chain(self.bot_wrapper, rag_prompt)
        #return create_retrieval_chain(self.compression_retriever, combine_docs_chain)
        return create_retrieval_chain(self.retriever, combine_docs_chain)

    def setup_tts(self, model_name="tts_models/en/ljspeech/fast_pitch"):
        self.tts = TTS(model_name=model_name,progress_bar=False, vocoder_path='vocoder_models/en/ljspeech/univnet')

    def setup_speech_recognition(self):
        self.recognizer = speech_recognition.Recognizer()
    
    def setup_folders(self):
        self.dirs=["test_input","vectorstore","test"]
        for d in self.dirs:
            os.makedirs(d, exist_ok=True)

    def __call__(self, text):
        if self.conv_id:
            self.bot.change_conversation(self.bot.get_conversation_from_id(self.conv_id))
        else:
            self.conv_id = self.bot.new_conversation(system_prompt=self.system_prompt, modelIndex=self.default_llm, switch_to=True)
        return self.send_message(text)

    def send_message(self, message, web=False):
        message_result = self.bot.chat(message, web_search=web)
        return message_result.wait_until_done()

    def stream_response(self, message, web=False, stream=False):
        responses = []
        for resp in self.bot.query(message, stream=stream, web_search=web):
            responses.append(resp['token'])
        return ' '.join(responses)

    def web_search(self, text):
        result = self.send_message(text, web=True)
        return result

    def retrieve_context(self, query: str):
        context=[]
        return context
        try:
            lowres = self.retriever.invoke({'input': query})
            vector_context = "\n".join(lowres) if lowres else "No Context Available!"
        except Exception as e:
            vector_context = f"Error retrieving context: {str(e)}"
        context.append(vector_context)
        try:
            highres=self.compression_retriever.invoke({'input':query})
            vector_context = "\n".join(highres) if highres else "No Context Available!"
        except Exception as e:
            vector_context = f"Error retrieving context: {str(e)}"
        context.append(vector_context)
        
        context = "\n".join([doc.page_content for doc in context])
        rp(f"CONTEXT:{context}")
        return context

    def delete_all_conversations(self):
        self.bot.delete_all_conversations()

    def delete_conversation(self, conversation_object: Conversation = None):
        self.bot.delete_conversation(conversation_object)

    def get_available_llm_models(self) -> list:
        return self.bot.get_available_llm_models()

    def get_remote_conversations(self, replace_conversation_list=True):
        return self.bot.get_remote_conversations(replace_conversation_list)

    def get_conversation_info(self, conversation: Union[Conversation, str] = None) -> Conversation:
        return self.bot.get_conversation_info(conversation)

    def get_assistant_list_by_page(self, page: int) -> List[Assistant]:
        return self.bot.get_assistant_list_by_page(page)

    def search_assistant(self, assistant_name: str = None, assistant_id: str = None) -> Assistant:
        return self.bot.search_assistant(assistant_name, assistant_id)

    def switch_model(self, index):
        self.conv_id = None
        self.default_llm = index

    def switch_conversation(self, id):
        self.conv_id = id

    def switch_role(self, system_prompt_id):
        self.system_prompt = system_prompt_id

    def chat(self, text: str, web_search: bool = False, _stream_yield_all: bool = False, retry_count: int = 5, conversation: Conversation = None, *args, **kwargs) -> Message:
        return self.bot.chat(text, web_search, _stream_yield_all, retry_count, conversation, *args, **kwargs)
    
    def get_all_documents(self) -> List[Document]:
        """
        Retrieve all documents from the vectorstore.
        """
        if not self.vector_store:
            self.setup_vector_store()
        
        all_docs_query = "* *"  # This is a common wildcard query, but may need adjustment based on your specific setup

        # Use the base retriever to get all documents
        # Set a high limit to ensure we get all documents
        all_docs = self.retriever.get_relevant_documents(all_docs_query, k=10000)  # Adjust the k value if needed
        return all_docs
    
    def generate_3d_scatterplot(self, num_points=1000):
        """
        Generate a 3D scatter plot of the vector store content.
        
        :param num_points: Maximum number of points to plot (default: 1000)
        :return: None (displays the plot)
        """
        import plotly.graph_objects as go
        import numpy as np
        from sklearn.decomposition import PCA

        # Get all documents using the get_all_documents method
        all_docs = self.get_all_documents()

        if not all_docs:
            raise ValueError("No documents found in the vector store.")

        # Extract vectors from documents
        vectors = []
        for doc in all_docs:
            # Assuming each document has a vector attribute or method to get its vector
            # You might need to adjust this based on your Document structure
            if hasattr(doc, 'embedding') and doc.embedding is not None:
                vectors.append(doc.embedding)
            else:
                # If the document doesn't have an embedding, we'll need to create one
                vectors.append(self.embeddings.embed_query(doc.page_content))

        vectors = np.array(vectors)

        # If we have more vectors than requested points, sample randomly
        if len(vectors) > num_points:
            indices = np.random.choice(len(vectors), num_points, replace=False)
            vectors = vectors[indices]

        # Perform PCA to reduce to 3 dimensions
        pca = PCA(n_components=3)
        vectors_3d = pca.fit_transform(vectors)

        # Create the 3D scatter plot
        fig = go.Figure(data=[go.Scatter3d(
            x=vectors_3d[:, 0],
            y=vectors_3d[:, 1],
            z=vectors_3d[:, 2],
            mode='markers',
            marker=dict(
                size=5,
                color=vectors_3d[:, 2],  # Color by z-dimension
                colorscale='Viridis',
                opacity=0.8
            )
        )])

        # Update layout
        fig.update_layout(
            title='3D Scatter Plot of Vector Store Content',
            scene=dict(
                xaxis_title='PCA Component 1',
                yaxis_title='PCA Component 2',
                zaxis_title='PCA Component 3'
            ),
            width=900,
            height=700,
        )

        # Show the plot
        fig.show()

        print(f"Generated 3D scatter plot with {len(vectors)} points.")

    def listen_for_speech(self):
        with speech_recognition.Microphone() as source:
            rp("Listening...")
            audio = self.recognizer.listen(source)
            
        try:
            text = self.recognizer.recognize_google(audio)
            rp(f"You said: {text}")
            return text
        except speech_recognition.UnknownValueError:
            rp("Sorry, I couldn't understand that.")
            return None
        except speech_recognition.RequestError as e:
            rp(f"Could not request results from Google Speech Recognition service; {e}")
            return None

    def optimized_tts(self, text: str, output_file: str = "output.wav", speaking_rate: float = 5) -> str:
        start_time = time.time()
        rp(f"Starting TTS at {start_time}")
        try:
            self.tts.tts_to_file(
                text=text,
                file_path=output_file,
                speaker=self.tts.speakers[0] if self.tts.speakers else None,
                language=self.tts.languages[0] if self.tts.languages else None,
                speed=speaking_rate,
                split_sentences=True
            )
            end_time = time.time()
            rp(f"TTS generation took {end_time - start_time:.2f} seconds")

        except RuntimeError as e:
            if "Kernel size can't be greater than actual input" in str(e):
                rp(f"Text too short for TTS: {text}")
            else:
                raise  # Re-raise if it's a different RuntimeError
        
        return output_file

    @staticmethod
    def play_mp3(file_path):
        playsound(file_path)

    def continuous_voice_chat(self):
        self.input_method = None
        while True:
            rp("Speak your query (or say 'exit' to quit):")
            self.input_method = self.listen_for_speech()
            self.voice_chat_exit = False
            query = self.input_method
            
            if query is None:
                continue

            """ if 'switch prompt ' in query.lower():
                q = query.lower()
                new_prompt = q.split("switch prompt ").pop().replace(" ", "_")
                #rp(new_prompt)
                if new_prompt in self.prompts.keys():
                    self.system_prompt = self.prompts[new_prompt]
                    rp(f"new system prompt:{self.system_prompt}")
                
                
                #self.switch_role(new_prompt_id)
                self.optimized_tts(f"Switched Role to {new_prompt}!")
                self.play_mp3('output.wav')
                continue """

            if query.lower() == "voice":
                rp("Speak your query (or say 'exit' to quit):")
                self.input_method = self.listen_for_speech()
                continue
            
            if query.lower() == "type":
                self.input_method = input("Type your question(or type 'exit' to quit): \n")
                continue
            
            if query.lower() == 'exit':
                rp("Goodbye!")
                self.optimized_tts("Ok, exiting!")
                self.play_mp3('output.wav')
                self.voice_chat_exit = True
                break
            
            result = self.web_search(query)
            web_context = "\n".join(result) if result else "No Context Available from the websearch!"
            #vector_context = self.retrieve_context(query)
            
            #self.system_prompt = self.system_prompt.replace("<<VSCONTEXT>>", vector_context if vector_context else "No Context Available in the vectorstore!")
            self.system_prompt = self.system_prompt.replace("<<WSCONTEXT>>", web_context)
            
            response = self.bot.chat(query)
            
            if "/Store:" in response:
                url = response.split("/Store:").pop().split(" ")[0]
                rp(f"Fetching and storing data from link: {url}")
                try:
                    self.add_document_from_url(url)
                except Exception as e:
                    rp(f"Error while fetching data from {url}! {e}")
                continue
            
            if "/Delete:" in response:
                document = response.split("/Delete:").pop().split(" ")[0]
                rp(f"Deleting {document} from vectorstore!")
                try:
                    self.delete_document(document)
                except Exception as e:
                    rp(f"Error while deleting {document} from vectorstore! {e}")

            rp(f"Chatbot: {response}")
            
            self.play_mp3(self.optimized_tts(str(response)))


    def initialize_vector_store(
        self,
        initial_docs: Union[List[Union[str, Document]], str],
        embedding_model_name: str = "sentence-transformers/all-MiniLM-L6-v2",
        persist_directory: str = "faiss_index",
        index_name: str = "document_store"
    ) -> FAISS:
        """
        Initialize a FAISS vector store. If a persistent store exists, load and update it.
        Otherwise, create a new one from the initial documents.

        Args:
        initial_docs (Union[List[Union[str, Document]], str]): Initial documents to add if creating a new store.
        embedding_model_name (str): Name of the HuggingFace embedding model to use.
        persist_directory (str): Directory to save/load the persistent vector store.
        index_name (str): Name of the index file.

        Returns:
        FAISS: The initialized or loaded FAISS vector store.
        """
        allow_dangerous_deserialization=True
        index_file_path = os.path.join(persist_directory, f"{index_name}.faiss")
        
        # Convert initial_docs to a list of Document objects
        if isinstance(initial_docs, str):
            initial_docs = [Document(page_content=initial_docs)]
        elif isinstance(initial_docs, list):
            initial_docs = [
                doc if isinstance(doc, Document) else Document(page_content=doc)
                for doc in initial_docs
            ]
        
        if os.path.exists(index_file_path):
            print(f"Loading existing vector store from {index_file_path}")
            vector_store = FAISS.load_local(
                persist_directory, 
                self.embeddings, 
                index_name,
                allow_dangerous_deserialization=allow_dangerous_deserialization
                )
            
            # Update with new documents if any
            if initial_docs:
                print(f"Updating vector store with {len(initial_docs)} new documents")
                vector_store.add_documents(initial_docs)
                vector_store.save_local(persist_directory, index_name)
        else:
            print(f"Creating new vector store with {len(initial_docs)} documents")
            vector_store = FAISS.from_documents(initial_docs, self.embeddings)
            
            # Ensure the directory exists
            os.makedirs(persist_directory, exist_ok=True)
            vector_store.save_local(persist_directory, index_name)
        
        return vector_store
    
    def setup_vector_store(self):   
        from langchain.docstore import InMemoryDocstore        
        embedding_size = 384  # Size for all-MiniLM-L6-v2 embeddings
        index = faiss.IndexFlatL2(embedding_size)
        docstore = InMemoryDocstore({})
        
        self.vector_store = FAISS(
            self.embeddings, 
            index, 
            docstore, 
            {}
        )

    """     def setup_vector_store(self):
            self.vector_store = self.initialize_vector_store(['this your Birth, Rise and Shine a mighty bot']) 

    """
    def add_documents_folder(self, folder_path):
        paths=[]
        for root, _, files in os.walk(folder_path):
            for file in files:
                paths.append(os.path.join(root, file))
        
        self.add_documents(paths)

    def fetch_document(self, file_path):
        with open(file_path, 'r', encoding='utf-8') as file:
            content = file.read()
            return Document(page_content=content)
            #self.vector_store.add_documents([document])
    
    def add_documents(self, documents: List[str]):
        docs_to_add=[]
        if not self.vector_store:
            self.setup_vector_store()
        for document in documents:
            docs_to_add.append(self.fetch_document(document))

        self.vector_store.add_documents(docs_to_add)
        
        # Print the added documents for verification
        for i in range(len(docs_to_add)):
            doc_id = self.vector_store.index_to_docstore_id[i]
            rp(f"Added document {i}: {self.vector_store.docstore._dict[doc_id]}")

    def add_document_from_url(self, url):
        if not self.vector_store:
            self.setup_vector_store()
        response = requests.get(url)
        if response.status_code == 200:
            content = response.text
            document = Document(page_content=content)
            self.vector_store.add_documents([document])
        else:
            rp(f"Failed to fetch URL content: {response.status_code}")

    def delete_document(self, document):
        if document in self.vector_store:
            self.vector_store.delete_document(document)
            rp(f"Deleted document: {document}")
        else:
            rp(f"Document not found: {document}")

    def _add_to_vector_store(self, name, content):
        document = Document(page_content=content)
        self.vector_store.add_documents([document])
        rp(f"Added document to vector store: {name}")
        # Example of updating the vectorizer (you might need to adjust based on your actual implementation)
        self.vectorizer.fit_transform(self.compressed_retriever.invoke("*"))
    
    def clone_github_repo(self, repo_url, local_path='./repo'):
        if os.path.exists(local_path):
            rp("Repository already cloned.") 
            return local_path
        Repo.clone_from(repo_url, local_path)
        return local_path
    
    def load_documents(self, repo_url, file_types=['*.py', '*.md', '*.txt', '*.html']):
        local_repo_path = self.clone_github_repo(repo_url)
        loader = DirectoryLoader(path=local_repo_path, glob=f"**/{{{','.join(file_types)}}}", show_progress=True, recursive=True)
        loaded=loader.load()
        rp(f"Nr. files loaded: {len(loaded)}")
        return loaded
    
    def recursive_glob(self,root_dir, patterns):
        import fnmatch
        """Recursively search for files matching the patterns in root_dir.

        Args:
            root_dir (str): The root directory to start the search from.
            patterns (list): List of file patterns to search for, e.g., ['*.py', '*.md'].

        Returns:
            list: List of paths to the files matching the patterns.
        """
        matched_files = []
        for root, dirs, files in os.walk(root_dir):
            for pattern in patterns:
                for filename in fnmatch.filter(files, pattern):
                    matched_files.append(os.path.join(root, filename))
        return matched_files


    def load_documents_from_github(self, repo_url, file_types=['*.py', '*.md', '*.txt', '*.html']):
        local_repo_path = self.clone_github_repo(repo_url)
        document_paths = self.recursive_glob(local_repo_path, file_types)
        rp(f"Found {len(document_paths)} documents")
        self.add_documents(document_paths)
        """ loader = DirectoryLoader(path=local_repo_path, glob=f"**/{{{','.join(file_types)}}}", show_progress=True, recursive=True)
        loaded=loader.load(document_paths)
        rp(f"Nr. files loaded: {len(loaded)}")
        return loaded """

    def split_documents(self, documents: list,chunk_s=512,chunk_o=0):
        split_docs = []
        for doc in documents:
            ext = os.path.splitext(getattr(doc, 'source', '') or getattr(doc, 'filename', ''))[1].lower()
            if ext == '.py':
                splitter = RecursiveCharacterTextSplitter.from_language(language=Language.PYTHON, chunk_size=chunk_s, chunk_overlap=chunk_o)
            elif ext in ['.md', '.markdown']:
                splitter = RecursiveCharacterTextSplitter.from_language(language=Language.MARKDOWN, chunk_size=chunk_s, chunk_overlap=chunk_o)
            elif ext in ['.html', '.htm']:
                splitter = RecursiveCharacterTextSplitter.from_language(language=Language.HTML, chunk_size=chunk_s, chunk_overlap=chunk_o)
            else:
                splitter = CharacterTextSplitter(chunk_size=chunk_s, chunk_overlap=chunk_o, add_start_index=True)
            
            split_docs.extend(splitter.split_documents([doc]))
        return split_docs,splitter
    

    def save_vectorstore_local(self, folder_path: str="vectorstore", index_name: str = "faiss_index"):
        """
        Save the FAISS vectorstore locally with all necessary components.

        Args:
            folder_path (str): Folder path to save index, docstore, and index_to_docstore_id to.
            index_name (str): Name for the saved index file (default is "faiss_index").
        """

        # Get all documents from the vectorstore
        documents = self.compressed_retriever.invoke("*")<--error

        # Create a new docstore and index_to_docstore_id mapping
        docstore: Dict[str, Document] = {}
        index_to_docstore_id: Dict[int, str] = {}

        for i, doc in enumerate(documents):
            # Generate a unique ID for each document
            doc_id = str(uuid4())
            docstore[doc_id] = doc
            index_to_docstore_id[i] = doc_id

        # Save the FAISS index
        self.vector_store.save_local(folder_path, index_name)

        # Save the docstore
        import pickle
        with open(os.path.join(folder_path, f"{index_name}_docstore.pkl"), "wb") as f:
            pickle.dump(docstore, f)

        # Save the index_to_docstore_id mapping
        with open(os.path.join(folder_path, f"{index_name}_index_to_docstore_id.pkl"), "wb") as f:
            pickle.dump(index_to_docstore_id, f)

        rp(f"Vectorstore saved successfully to {folder_path}")
        return folder_path
    

    @classmethod
    def load_vectorstore_local(cls, folder_path: str, index_name: str = "faiss_index", embeddings=None):
        """
        Load a previously saved FAISS vectorstore.
        Args:
            folder_path (str): Folder path where the index, docstore, and index_to_docstore_id are saved.
            index_name (str): Name of the saved index file (default is "faiss_index").
            embeddings: The embeddings object to use (must be the same type used when saving).
        Returns:
            FAISS: Loaded FAISS vectorstore
        """
        # Ensure you trust the source of the pickle file before setting this to True
        allow_dangerous_deserialization = True

        # Load the docstore
        with open(os.path.join(folder_path, f"{index_name}_docstore.pkl"), "rb") as f:
            docstore = pickle.load(f)
        # Load the index_to_docstore_id mapping
        with open(os.path.join(folder_path, f"{index_name}_index_to_docstore_id.pkl"), "rb") as f:
            index_to_docstore_id = pickle.load(f)

        # Load the FAISS index
        vectorstore = FAISS.load_local(
            folder_path, 
            embeddings, 
            index_name,
            allow_dangerous_deserialization=allow_dangerous_deserialization
            )
        # Reconstruct the FAISS object with the loaded components
        vectorstore.docstore = docstore
        vectorstore.index_to_docstore_id = index_to_docstore_id

        return vectorstore
    
    def create_vectorstore_from_github(self):
        documents = self.load_documents_from_github(self.repo_url)
        split_docs,splitter = self.split_documents(documents,512,0)
        self.latest_splitter=splitter
        self.vector_store = FAISS.from_documents(split_docs, self.embeddings)
        self.vector_store.save_local()
        rp(f"Vectorstore created with {len(split_docs)} documents.")

    def update_vectorstore(self, new_documents):
        split_docs,splitter = self.split_documents(new_documents)
        self.latest_splitter=splitter
        self.vector_store.add_documents(split_docs)
        rp(f"Vectorstore updated with {len(split_docs)} new documents.")
    

    def retrieve_with_chain(self, query, mode='high'):
        if mode == 'high':
            return self.compressed_retriever.invoke({"input": query})
        else:
            return self.retriever.invoke({"input": query})

    def generate_code(self, prompt):
        self.system_prompt=self.prompts["code_generator_prompt"]
        return self.send_message(prompt)

    def debug_script(self, script):
        self.system_prompt = self.prompts["script_debugger_prompt"]
        return self.send_message(f"Debug the following script:\n\n{script}")

    def test_software(self, software_description):
        self.system_prompt = self.prompts["software_tester_prompt"]
        return self.send_message(f"Create a test plan for the following software:\n\n{software_description}")

    def parse_todo(self, todo_list):
        self.system_prompt = self.prompts["todo_parser_prompt"]
        return self.send_message(f"Parse and organize the following TODO list:\n\n{todo_list}")

    def tell_story(self, prompt):
        self.system_prompt = self.prompts["story_teller_prompt"]
        return self.stream_response(f"Tell a story based on this prompt:\n\n{prompt}")

    def act_as_copilot(self, task):
        self.system_prompt = self.prompts["copilot_prompt"]
        return self.send_message(f"Assist me as a copilot for the following task:\n\n{task}")

    def control_iterations(self, task, max_iterations=5):
        self.system_prompt = self.prompts["iteration_controller_prompt"]
        iteration = 0
        result = ""
        while iteration < max_iterations:
            response = self.send_message(f"Iteration {iteration + 1} for task:\n\n{task}\n\nCurrent result:\n{result}")
            result += f"\nIteration {iteration + 1}:\n{response}"
            if "TASK_COMPLETE" in response:
                break
            iteration += 1
        return result

    def voice_command_mode(self):
        rp("Entering voice command mode. Speak your commands.")
        while True:
            command = self.listen_for_speech()
            if command is None:
                continue
            if command.lower() == "exit voice mode":
                rp("Exiting voice command mode.")
                break
            response = self.process_voice_command(command)
            rp(f"Assistant: {response}")
            self.optimized_tts(response)
            self.play_mp3('output.wav')

    def process_voice_command(self, command):
        if "generate code" in command.lower():
            return self.generate_code(command)
        elif "debug script" in command.lower():
            return self.debug_script(command)
        elif "test software" in command.lower():
            return self.test_software(command)
        elif "parse todo" in command.lower():
            return self.parse_todo(command)
        elif "tell story" in command.lower():
            return self.tell_story(command)
        elif "act as copilot" in command.lower():
            return self.act_as_copilot(command)
        else:
            return self.send_message(command)

    def interactive_mode(self):
        rp("Entering interactive mode. Type 'exit' to quit, 'voice' for voice input, or 'command' for specific functions.")
        while True:
            user_input = input("You: ")
            if user_input.lower() == 'exit':
                rp("Exiting interactive mode.")
                break
            elif user_input.lower() == 'voice':
                self.voice_command_mode()
            elif user_input.lower() == 'command':
                self.command_mode()
            else:
                response = self.send_message(user_input)
                rp(f"Assistant: {response}")

    def command_mode(self):
        rp("Entering command mode. Available commands: generate_code, debug_script, test_software, parse_todo, tell_story, copilot, iterate")
        while True:
            command = input("Enter command (or 'exit' to return to interactive mode): ")
            if command.lower() == 'exit':
                rp("Exiting command mode.")
                break
            self.execute_command(command)

    def execute_command(self, command):
        if command == "add_to_vectorstore":
            prompt = input("Enter list of files, folders, urls or repos with knowledge to add:")
            response = self.generate_code(prompt)
        if command == "generate_code":
            file_name = input("Enter script filename:")
            prompt = input("Enter code generation prompt:")
            response = self.generate_code(prompt)
        elif command == "debug_script":
            script = input("Enter script to debug:")
            response = self.debug_script(script)
        elif command == "test_script":
            description = input("Enter path to script:")
            response = self.test_software(description)
        elif command == "parse_todo":
            todo_list = input("Enter TODO list:")
            response = self.parse_todo(todo_list)
        elif command == "tell_story":
            prompt = input("Enter story prompt:")
            response = self.tell_story(prompt)
        elif command == "copilot":
            task = input("Enter task for copilot:")
            response = self.act_as_copilot(task)
        elif command == "iterate":
            task = input("Enter task for iteration:")
            max_iterations = int(input("Enter maximum number of iterations: "))
            response = self.control_iterations(task, max_iterations)
        else:
            response = "Unknown command. Please try again."
        
        rp(f"Assistant: {response}")

    def run(self):
        rp("Welcome to the Advanced AI Toolkit!")
        rp("Choose a mode to start:")
        rp("1. Interactive Chat")
        rp("2. Voice Chat")
        rp("3. Command Mode")
        choice = input("Enter your choice (1/2/3): ")
        
        if choice == '1':
            self.interactive_mode()
        elif choice == '2':
            self.continuous_voice_chat()
        elif choice == '3':
            self.command_mode()
        else:
            rp("Invalid choice. Exiting.")

if __name__ == "__main__":
    email = os.getenv("EMAIL")
    password = os.getenv("PASSWD")
    toolkit = UberToolkit(email, password)
    toolkit.run()