File size: 16,348 Bytes
0061c9d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
import streamlit as st
from llm_chatbot import LLMChatBot
from streamlit_option_menu import option_menu
import speech_recognition as sr
import pyttsx3
import os
import getpass
from uuid import uuid4
import faiss
import numpy as np
import requests
import io
import warnings
import torch
import pickle
import asyncio
import json
from git import Repo
from rich import print as rp
from typing import Union, List, Generator, Any, Mapping, Optional, Dict
from requests.sessions import RequestsCookieJar
from dotenv import load_dotenv, find_dotenv
from langchain import hub
from langchain_core.documents import Document
from langchain.chains.combine_documents import create_stuff_documents_chain
from langchain.chains import create_retrieval_chain
from langchain_community.document_loaders import DirectoryLoader
from langchain.text_splitter import RecursiveCharacterTextSplitter, Language
from langchain_huggingface import HuggingFaceEmbeddings
from langchain_community.vectorstores import Chroma, FAISS
from langchain.vectorstores.base import VectorStore
from langchain.retrievers import MultiQueryRetriever
from langchain.retrievers.self_query.base import SelfQueryRetriever
from langchain.llms import BaseLLM
from langchain.retrievers import ContextualCompressionRetriever
from langchain.retrievers.document_compressors import LLMChainExtractor
from langchain.retrievers.document_compressors import DocumentCompressorPipeline
from langchain_community.document_transformers import EmbeddingsRedundantFilter
from langchain_text_splitters import CharacterTextSplitter
from langchain.retrievers.document_compressors import EmbeddingsFilter
from langchain.memory.buffer import ConversationBufferMemory
from langchain.chains import StuffDocumentsChain, LLMChain, ConversationalRetrievalChain
from uber_toolkit_class import UberToolkit
from glob import glob
import numpy as np
import pandas as pd
import plotly.graph_objects as go
import plotly.express as px
from plotly.subplots import make_subplots
import plotly.io as pio
from sklearn.decomposition import PCA
from sklearn.preprocessing import MinMaxScaler
from langchain_core.documents import Document
from scipy.stats import gaussian_kde
from huggingface_hub import InferenceClient
from hugchat import hugchat
from hugchat.login import Login
from hugchat.message import Message
from hugchat.types.assistant import Assistant
from hugchat.types.model import Model
from hugchat.types.message import MessageNode, Conversation
from langchain_community.document_loaders import TextLoader
from TTS.api import TTS
import time
from playsound import playsound
from system_prompts import __all__ as prompts

from profiler import VoiceProfileManager, VoiceProfile

# Load environment variables
load_dotenv(find_dotenv())

class ChatbotApp:
    def __init__(self, email, password, default_llm=1):
        self.email = email
        self.password = password
        self.default_llm = default_llm
        self.embeddings = HuggingFaceEmbeddings(
            model_name="all-MiniLM-L6-v2",
            model_kwargs={'device': 'cpu'},
            encode_kwargs={'normalize_embeddings': True}
        )
        self.vectorstore = None
       


    def create_vectorstore_from_github(self):
        repo_url = "YOUR_REPO_URL"
        local_repo_path = self.clone_github_repo(repo_url)
        loader = DirectoryLoader(path=local_repo_path, glob=f"**/*", show_progress=True, recursive=True)
        loaded_files = loader.load()
        documents = [Document(page_content=file_content) for file_content in loaded_files]
        text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=0)
        split_documents = text_splitter.split_documents(documents)
        texts = [doc.page_content for doc in split_documents]
        print(f"Texts for embedding: {texts}")  # Debug print
        self.vectorstore = FAISS.from_texts(texts, self.embeddings)
    
    def create_vectorstore(self, docs):
        
        text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=0)
        # Wrap text content in Document objects
        documents = [Document(page_content=doc) for doc in docs]
        # Split documents using the text splitter
        split_documents = text_splitter.split_documents(documents)
        # Convert split documents back to plain text
        texts = [doc.page_content for doc in split_documents]
        vectorstore = FAISS.from_texts(texts, self.setup_embeddings())
        return vectorstore
    
    def setup_session_state(self):
        if 'chat_history' not in st.session_state:
            st.session_state.chat_history = []
        if 'voice_mode' not in st.session_state:
            st.session_state.voice_mode = False
        if 'vectorstore' not in st.session_state:
            st.session_state.vectorstore = None
        if 'retriever' not in st.session_state:
            st.session_state.retriever = None
        if 'compression_retriever' not in st.session_state:
            st.session_state.compression_retriever = None

    def text_to_speech(self, text):
        self.engine.say(text)
        self.engine.runAndWait()

    def speech_to_text(self):
        r = sr.Recognizer()
        with sr.Microphone() as source:
            st.write("Listening...")
            audio = r.listen(source)
            try:
                text = r.recognize_google(audio)
                return text
            except:
                return "Sorry, I didn't catch that."



    def setup_embeddings(self):
        return HuggingFaceEmbeddings(
            model_name="all-MiniLM-L6-v2",
            model_kwargs={'device': 'cpu'},
            encode_kwargs={'normalize_embeddings': True}
        )
 
    def create_vector_store(self, docs):
        text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=0)
        # Wrap text content in Document objects
        documents = [Document(page_content=doc) for doc in docs]
        # Split documents using the text splitter
        split_documents = text_splitter.split_documents(documents)
        print(f"Split documents: {split_documents}")  # Debug print
        # Convert split documents back to plain text
        texts = [doc.page_content for doc in split_documents]
        print(f"Texts: {texts}")  # Debug print
        if not texts:
            print("No valid texts found for embedding. Check your repository content.")
            return

        try:
            self.vectorstore = FAISS.from_texts(texts, self.embeddings)
            print("Vector store created successfully")
        except Exception as e:
            print(f"Error creating vector store: {str(e)}")


    def setup_retriever(self, k=5, similarity_threshold=0.76):
        self.retriever = st.session_state.vectorstore.as_retriever(k=k)
        splitter = CharacterTextSplitter(chunk_size=300, chunk_overlap=0, separator=". ")
        redundant_filter = EmbeddingsRedundantFilter(embeddings=self.setup_embeddings())
        relevant_filter = EmbeddingsFilter(embeddings=self.setup_embeddings(), similarity_threshold=similarity_threshold)
        pipeline_compressor = DocumentCompressorPipeline(
            transformers=[splitter, redundant_filter, relevant_filter]
        )
        st.session_state.compression_retriever = ContextualCompressionRetriever(base_compressor=pipeline_compressor, base_retriever=self.retriever)

    def create_retrieval_chain(self):
        rag_prompt = hub.pull("langchain-ai/retrieval-qa-chat")
        combine_docs_chain = create_stuff_documents_chain(self.llm, rag_prompt)
        self.high_retrieval_chain = create_retrieval_chain(st.session_state.compression_retriever, combine_docs_chain)
        self.low_retrieval_chain = create_retrieval_chain(self.retriever, combine_docs_chain)

    def setup_tts(self, model_name="tts_models/en/ljspeech/fast_pitch"):
        self.tts = TTS(model_name=model_name, progress_bar=False, vocoder_path='vocoder_models/en/ljspeech/univnet')

    def setup_speech_recognition(self):
        self.recognizer = sr.Recognizer()

    def setup_folders(self):
        self.dirs = ["test_input", "vectorstore", "test"]
        for d in self.dirs:
            os.makedirs(d, exist_ok=True)

    def send_message(self, message, web=False):
        message_result = self.llm.chat(message, web_search=web)
        return message_result.wait_until_done()

    def stream_response(self, message, web=False, stream=False):
        responses = []
        for resp in self.llm.query(message, stream=stream, web_search=web):
            responses.append(resp['token'])
        return ' '.join(responses)

    def web_search(self, text):
        result = self.send_message(text, web=True)
        return result

    def retrieve_context(self, query: str):
        context = []
        lowres = self.retriever._get_relevant_documents(query)
        highres = st.session_state.compression_retriever.get_relevant_documents(query)
        context = "\n".join([doc.page_content for doc in lowres + highres])
        return context

    def get_conversation_chain(self):
        EMAIL = os.getenv("EMAIL")
        PASSWD = os.getenv("PASSWD")
        model = 1
        self.llm = LLMChatBot(EMAIL, PASSWD, default_llm=model)
        self.llm.create_new_conversation(system_prompt=self.llm.default_system_prompt, switch_to=True)

        memory = ConversationBufferMemory(memory_key='chat_history', return_messages=True)
        conversation_chain = ConversationalRetrievalChain.from_llm(
            llm=self.llm,
            retriever=st.session_state.vectorstore.as_retriever(),
            memory=memory
        )
        return conversation_chain

    async def handle_user_input(self, user_input):
        response = st.session_state.conversation({'question': user_input})
        st.session_state.chat_history = response['chat_history']

        for i, message in enumerate(st.session_state.chat_history):
            if i % 2 == 0:
                st.write(f"Human: {message.content}")
            else:
                st.write(f"AI: {message.content}")
                if st.session_state.voice_mode:
                    self.text_to_speech(message.content)

    def clone_github_repo(self, repo_url, local_path='./repo'):
        if os.path.exists(local_path):
            st.write("Repository already cloned.")
            return local_path
        Repo.clone_from(repo_url, local_path)
        return local_path
    
    def glob_recursive_multiple_extensions(base_dir, extensions):
        all_files = []
        for ext in extensions:
            pattern = os.path.join(base_dir, '**', f'*.{ext}')
            files = glob(pattern, recursive=True)
            all_files.extend(files)
        return all_files

    def load_documents_from_github(self, repo_url, file_types=['*.py', '*.md', '*.txt', '*.html']):
        local_repo_path = self.clone_github_repo(repo_url)
        globber=f"**/*/{{{','.join(file_types)}}}"
        rp(globber)
        loader = DirectoryLoader(path=local_repo_path, glob=globber, show_progress=True, recursive=True,loader_cls=TextLoader)
        loaded_files = loader.load()
        st.write(f"Nr. files loaded: {len(loaded_files)}")
        print(f"Loaded files: {len(loaded_files)}")  # Debug print

        # Convert the loaded files to Document objects
        documents = [Document(page_content=file_content) for file_content in loaded_files]
        print(f"Documents: {documents}")  # Debug print

        return documents
    
    def split_documents(self, documents, chunk_s=512, chunk_o=0):
        split_docs = []
        splitter=None
        for doc in documents:
            ext = os.path.splitext(getattr(doc, 'source', '') or getattr(doc, 'filename', ''))[1].lower()
            if ext == '.py':
                splitter = RecursiveCharacterTextSplitter.from_language(language=Language.PYTHON, chunk_size=chunk_s, chunk_overlap=chunk_o)
            elif ext in ['.md', '.markdown']:
                splitter = RecursiveCharacterTextSplitter.from_language(language=Language.MARKDOWN, chunk_size=chunk_s, chunk_overlap=chunk_o)
            elif ext in ['.html', '.htm']:
                splitter = RecursiveCharacterTextSplitter.from_language(language=Language.HTML, chunk_size=chunk_s, chunk_overlap=chunk_o)
            else:
                splitter = RecursiveCharacterTextSplitter(chunk_size=chunk_s, chunk_overlap=chunk_o)
            split_docs.extend(splitter.split_documents([doc]))
        return split_docs, splitter

    def visualize_vectorstore(self):
        if st.session_state.vectorstore is None:
            st.write("Vectorstore is not initialized.")
            return

        documents = st.session_state.vectorstore.get_all_documents()
        embeddings = [doc.embedding for doc in documents]

        pca = PCA(n_components=3)
        embeddings_3d = pca.fit_transform(embeddings)

        scaler = MinMaxScaler()
        embeddings_3d_normalized = scaler.fit_transform(embeddings_3d)

        colors = embeddings_3d_normalized[:, 0]

        hover_text = [f"Document {i}:<br>{doc.page_content[:100]}..." for i, doc in enumerate(documents)]

        fig = go.Figure(data=[go.Scatter3d(
            x=embeddings_3d_normalized[:, 0],
            y=embeddings_3d_normalized[:, 1],
            z=embeddings_3d_normalized[:, 2],
            mode='markers',
            marker=dict(
                size=5,
                color=colors,
                colorscale='Viridis',
                opacity=0.8
            ),
            text=hover_text,
            hoverinfo='text'
        )])

        fig.update_layout(
            title="Interactive 3D Vectorstore Document Distribution",
            scene=dict(
                xaxis_title="PCA Component 1",
                yaxis_title="PCA Component 2",
                zaxis_title="PCA Component 3"
            ),
            width=800,
            height=600,
        )

        st.plotly_chart(fig)

    def chatbot_page(self):
        st.title("Chatbot")

        # Toggle for voice mode
        st.session_state.voice_mode = st.toggle("Voice Mode")

        # File uploader for context injection
        uploaded_file = st.file_uploader("Choose a file for context injection")
        if uploaded_file is not None:
            documents = [uploaded_file.read().decode()]
            st.session_state.vectorstore = self.create_vector_store(documents)
            st.session_state.conversation = self.get_conversation_chain()

        # GitHub repository URL input
        repo_url = st.text_input("Enter GitHub repository URL")
        if repo_url:
            documents = self.load_documents_from_github(repo_url)
            split_docs, _ = self.split_documents(documents)
            st.session_state.vectorstore = self.create_vector_store(split_docs)
            st.session_state.conversation = self.get_conversation_chain()

        # Chat interface
        user_input = st.text_input("You: ", key="user_input")

        if user_input:
            asyncio.run(self.handle_user_input(user_input))

        if st.session_state.voice_mode:
            if st.button("Speak"):
                user_speech = self.speech_to_text()
                st.text_input("You: ", value=user_speech, key="user_speech_input")
                if user_speech != "Sorry, I didn't catch that.":
                    asyncio.run(self.handle_user_input(user_speech))

    def dashboard_page(self):
        st.title("Dashboard")

        if st.session_state.vectorstore is not None:
            st.write("Vectorstore Visualization")
            self.visualize_vectorstore()
        else:
            st.write("Vectorstore is not initialized. Please add documents in the Chatbot page.")

    def main(self):
        st.set_page_config(page_title="Enhanced Multi-page Chatbot App", layout="wide")

        # Sidebar navigation
        with st.sidebar:
            selected = option_menu(
                menu_title="Navigation",
                options=["Chatbot", "Dashboard"],
                icons=["chat", "bar-chart"],
                menu_icon="cast",
                default_index=0,
            )

        if selected == "Chatbot":
            self.chatbot_page()
        elif selected == "Dashboard":
            self.dashboard_page()


if __name__ == "__main__":
    app = ChatbotApp(os.getenv("EMAIL"),os.getenv("PASSWD"))
    app.main()