File size: 16,348 Bytes
0061c9d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 |
import streamlit as st
from llm_chatbot import LLMChatBot
from streamlit_option_menu import option_menu
import speech_recognition as sr
import pyttsx3
import os
import getpass
from uuid import uuid4
import faiss
import numpy as np
import requests
import io
import warnings
import torch
import pickle
import asyncio
import json
from git import Repo
from rich import print as rp
from typing import Union, List, Generator, Any, Mapping, Optional, Dict
from requests.sessions import RequestsCookieJar
from dotenv import load_dotenv, find_dotenv
from langchain import hub
from langchain_core.documents import Document
from langchain.chains.combine_documents import create_stuff_documents_chain
from langchain.chains import create_retrieval_chain
from langchain_community.document_loaders import DirectoryLoader
from langchain.text_splitter import RecursiveCharacterTextSplitter, Language
from langchain_huggingface import HuggingFaceEmbeddings
from langchain_community.vectorstores import Chroma, FAISS
from langchain.vectorstores.base import VectorStore
from langchain.retrievers import MultiQueryRetriever
from langchain.retrievers.self_query.base import SelfQueryRetriever
from langchain.llms import BaseLLM
from langchain.retrievers import ContextualCompressionRetriever
from langchain.retrievers.document_compressors import LLMChainExtractor
from langchain.retrievers.document_compressors import DocumentCompressorPipeline
from langchain_community.document_transformers import EmbeddingsRedundantFilter
from langchain_text_splitters import CharacterTextSplitter
from langchain.retrievers.document_compressors import EmbeddingsFilter
from langchain.memory.buffer import ConversationBufferMemory
from langchain.chains import StuffDocumentsChain, LLMChain, ConversationalRetrievalChain
from uber_toolkit_class import UberToolkit
from glob import glob
import numpy as np
import pandas as pd
import plotly.graph_objects as go
import plotly.express as px
from plotly.subplots import make_subplots
import plotly.io as pio
from sklearn.decomposition import PCA
from sklearn.preprocessing import MinMaxScaler
from langchain_core.documents import Document
from scipy.stats import gaussian_kde
from huggingface_hub import InferenceClient
from hugchat import hugchat
from hugchat.login import Login
from hugchat.message import Message
from hugchat.types.assistant import Assistant
from hugchat.types.model import Model
from hugchat.types.message import MessageNode, Conversation
from langchain_community.document_loaders import TextLoader
from TTS.api import TTS
import time
from playsound import playsound
from system_prompts import __all__ as prompts
from profiler import VoiceProfileManager, VoiceProfile
# Load environment variables
load_dotenv(find_dotenv())
class ChatbotApp:
def __init__(self, email, password, default_llm=1):
self.email = email
self.password = password
self.default_llm = default_llm
self.embeddings = HuggingFaceEmbeddings(
model_name="all-MiniLM-L6-v2",
model_kwargs={'device': 'cpu'},
encode_kwargs={'normalize_embeddings': True}
)
self.vectorstore = None
def create_vectorstore_from_github(self):
repo_url = "YOUR_REPO_URL"
local_repo_path = self.clone_github_repo(repo_url)
loader = DirectoryLoader(path=local_repo_path, glob=f"**/*", show_progress=True, recursive=True)
loaded_files = loader.load()
documents = [Document(page_content=file_content) for file_content in loaded_files]
text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=0)
split_documents = text_splitter.split_documents(documents)
texts = [doc.page_content for doc in split_documents]
print(f"Texts for embedding: {texts}") # Debug print
self.vectorstore = FAISS.from_texts(texts, self.embeddings)
def create_vectorstore(self, docs):
text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=0)
# Wrap text content in Document objects
documents = [Document(page_content=doc) for doc in docs]
# Split documents using the text splitter
split_documents = text_splitter.split_documents(documents)
# Convert split documents back to plain text
texts = [doc.page_content for doc in split_documents]
vectorstore = FAISS.from_texts(texts, self.setup_embeddings())
return vectorstore
def setup_session_state(self):
if 'chat_history' not in st.session_state:
st.session_state.chat_history = []
if 'voice_mode' not in st.session_state:
st.session_state.voice_mode = False
if 'vectorstore' not in st.session_state:
st.session_state.vectorstore = None
if 'retriever' not in st.session_state:
st.session_state.retriever = None
if 'compression_retriever' not in st.session_state:
st.session_state.compression_retriever = None
def text_to_speech(self, text):
self.engine.say(text)
self.engine.runAndWait()
def speech_to_text(self):
r = sr.Recognizer()
with sr.Microphone() as source:
st.write("Listening...")
audio = r.listen(source)
try:
text = r.recognize_google(audio)
return text
except:
return "Sorry, I didn't catch that."
def setup_embeddings(self):
return HuggingFaceEmbeddings(
model_name="all-MiniLM-L6-v2",
model_kwargs={'device': 'cpu'},
encode_kwargs={'normalize_embeddings': True}
)
def create_vector_store(self, docs):
text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=0)
# Wrap text content in Document objects
documents = [Document(page_content=doc) for doc in docs]
# Split documents using the text splitter
split_documents = text_splitter.split_documents(documents)
print(f"Split documents: {split_documents}") # Debug print
# Convert split documents back to plain text
texts = [doc.page_content for doc in split_documents]
print(f"Texts: {texts}") # Debug print
if not texts:
print("No valid texts found for embedding. Check your repository content.")
return
try:
self.vectorstore = FAISS.from_texts(texts, self.embeddings)
print("Vector store created successfully")
except Exception as e:
print(f"Error creating vector store: {str(e)}")
def setup_retriever(self, k=5, similarity_threshold=0.76):
self.retriever = st.session_state.vectorstore.as_retriever(k=k)
splitter = CharacterTextSplitter(chunk_size=300, chunk_overlap=0, separator=". ")
redundant_filter = EmbeddingsRedundantFilter(embeddings=self.setup_embeddings())
relevant_filter = EmbeddingsFilter(embeddings=self.setup_embeddings(), similarity_threshold=similarity_threshold)
pipeline_compressor = DocumentCompressorPipeline(
transformers=[splitter, redundant_filter, relevant_filter]
)
st.session_state.compression_retriever = ContextualCompressionRetriever(base_compressor=pipeline_compressor, base_retriever=self.retriever)
def create_retrieval_chain(self):
rag_prompt = hub.pull("langchain-ai/retrieval-qa-chat")
combine_docs_chain = create_stuff_documents_chain(self.llm, rag_prompt)
self.high_retrieval_chain = create_retrieval_chain(st.session_state.compression_retriever, combine_docs_chain)
self.low_retrieval_chain = create_retrieval_chain(self.retriever, combine_docs_chain)
def setup_tts(self, model_name="tts_models/en/ljspeech/fast_pitch"):
self.tts = TTS(model_name=model_name, progress_bar=False, vocoder_path='vocoder_models/en/ljspeech/univnet')
def setup_speech_recognition(self):
self.recognizer = sr.Recognizer()
def setup_folders(self):
self.dirs = ["test_input", "vectorstore", "test"]
for d in self.dirs:
os.makedirs(d, exist_ok=True)
def send_message(self, message, web=False):
message_result = self.llm.chat(message, web_search=web)
return message_result.wait_until_done()
def stream_response(self, message, web=False, stream=False):
responses = []
for resp in self.llm.query(message, stream=stream, web_search=web):
responses.append(resp['token'])
return ' '.join(responses)
def web_search(self, text):
result = self.send_message(text, web=True)
return result
def retrieve_context(self, query: str):
context = []
lowres = self.retriever._get_relevant_documents(query)
highres = st.session_state.compression_retriever.get_relevant_documents(query)
context = "\n".join([doc.page_content for doc in lowres + highres])
return context
def get_conversation_chain(self):
EMAIL = os.getenv("EMAIL")
PASSWD = os.getenv("PASSWD")
model = 1
self.llm = LLMChatBot(EMAIL, PASSWD, default_llm=model)
self.llm.create_new_conversation(system_prompt=self.llm.default_system_prompt, switch_to=True)
memory = ConversationBufferMemory(memory_key='chat_history', return_messages=True)
conversation_chain = ConversationalRetrievalChain.from_llm(
llm=self.llm,
retriever=st.session_state.vectorstore.as_retriever(),
memory=memory
)
return conversation_chain
async def handle_user_input(self, user_input):
response = st.session_state.conversation({'question': user_input})
st.session_state.chat_history = response['chat_history']
for i, message in enumerate(st.session_state.chat_history):
if i % 2 == 0:
st.write(f"Human: {message.content}")
else:
st.write(f"AI: {message.content}")
if st.session_state.voice_mode:
self.text_to_speech(message.content)
def clone_github_repo(self, repo_url, local_path='./repo'):
if os.path.exists(local_path):
st.write("Repository already cloned.")
return local_path
Repo.clone_from(repo_url, local_path)
return local_path
def glob_recursive_multiple_extensions(base_dir, extensions):
all_files = []
for ext in extensions:
pattern = os.path.join(base_dir, '**', f'*.{ext}')
files = glob(pattern, recursive=True)
all_files.extend(files)
return all_files
def load_documents_from_github(self, repo_url, file_types=['*.py', '*.md', '*.txt', '*.html']):
local_repo_path = self.clone_github_repo(repo_url)
globber=f"**/*/{{{','.join(file_types)}}}"
rp(globber)
loader = DirectoryLoader(path=local_repo_path, glob=globber, show_progress=True, recursive=True,loader_cls=TextLoader)
loaded_files = loader.load()
st.write(f"Nr. files loaded: {len(loaded_files)}")
print(f"Loaded files: {len(loaded_files)}") # Debug print
# Convert the loaded files to Document objects
documents = [Document(page_content=file_content) for file_content in loaded_files]
print(f"Documents: {documents}") # Debug print
return documents
def split_documents(self, documents, chunk_s=512, chunk_o=0):
split_docs = []
splitter=None
for doc in documents:
ext = os.path.splitext(getattr(doc, 'source', '') or getattr(doc, 'filename', ''))[1].lower()
if ext == '.py':
splitter = RecursiveCharacterTextSplitter.from_language(language=Language.PYTHON, chunk_size=chunk_s, chunk_overlap=chunk_o)
elif ext in ['.md', '.markdown']:
splitter = RecursiveCharacterTextSplitter.from_language(language=Language.MARKDOWN, chunk_size=chunk_s, chunk_overlap=chunk_o)
elif ext in ['.html', '.htm']:
splitter = RecursiveCharacterTextSplitter.from_language(language=Language.HTML, chunk_size=chunk_s, chunk_overlap=chunk_o)
else:
splitter = RecursiveCharacterTextSplitter(chunk_size=chunk_s, chunk_overlap=chunk_o)
split_docs.extend(splitter.split_documents([doc]))
return split_docs, splitter
def visualize_vectorstore(self):
if st.session_state.vectorstore is None:
st.write("Vectorstore is not initialized.")
return
documents = st.session_state.vectorstore.get_all_documents()
embeddings = [doc.embedding for doc in documents]
pca = PCA(n_components=3)
embeddings_3d = pca.fit_transform(embeddings)
scaler = MinMaxScaler()
embeddings_3d_normalized = scaler.fit_transform(embeddings_3d)
colors = embeddings_3d_normalized[:, 0]
hover_text = [f"Document {i}:<br>{doc.page_content[:100]}..." for i, doc in enumerate(documents)]
fig = go.Figure(data=[go.Scatter3d(
x=embeddings_3d_normalized[:, 0],
y=embeddings_3d_normalized[:, 1],
z=embeddings_3d_normalized[:, 2],
mode='markers',
marker=dict(
size=5,
color=colors,
colorscale='Viridis',
opacity=0.8
),
text=hover_text,
hoverinfo='text'
)])
fig.update_layout(
title="Interactive 3D Vectorstore Document Distribution",
scene=dict(
xaxis_title="PCA Component 1",
yaxis_title="PCA Component 2",
zaxis_title="PCA Component 3"
),
width=800,
height=600,
)
st.plotly_chart(fig)
def chatbot_page(self):
st.title("Chatbot")
# Toggle for voice mode
st.session_state.voice_mode = st.toggle("Voice Mode")
# File uploader for context injection
uploaded_file = st.file_uploader("Choose a file for context injection")
if uploaded_file is not None:
documents = [uploaded_file.read().decode()]
st.session_state.vectorstore = self.create_vector_store(documents)
st.session_state.conversation = self.get_conversation_chain()
# GitHub repository URL input
repo_url = st.text_input("Enter GitHub repository URL")
if repo_url:
documents = self.load_documents_from_github(repo_url)
split_docs, _ = self.split_documents(documents)
st.session_state.vectorstore = self.create_vector_store(split_docs)
st.session_state.conversation = self.get_conversation_chain()
# Chat interface
user_input = st.text_input("You: ", key="user_input")
if user_input:
asyncio.run(self.handle_user_input(user_input))
if st.session_state.voice_mode:
if st.button("Speak"):
user_speech = self.speech_to_text()
st.text_input("You: ", value=user_speech, key="user_speech_input")
if user_speech != "Sorry, I didn't catch that.":
asyncio.run(self.handle_user_input(user_speech))
def dashboard_page(self):
st.title("Dashboard")
if st.session_state.vectorstore is not None:
st.write("Vectorstore Visualization")
self.visualize_vectorstore()
else:
st.write("Vectorstore is not initialized. Please add documents in the Chatbot page.")
def main(self):
st.set_page_config(page_title="Enhanced Multi-page Chatbot App", layout="wide")
# Sidebar navigation
with st.sidebar:
selected = option_menu(
menu_title="Navigation",
options=["Chatbot", "Dashboard"],
icons=["chat", "bar-chart"],
menu_icon="cast",
default_index=0,
)
if selected == "Chatbot":
self.chatbot_page()
elif selected == "Dashboard":
self.dashboard_page()
if __name__ == "__main__":
app = ChatbotApp(os.getenv("EMAIL"),os.getenv("PASSWD"))
app.main()
|