RAGoLLAMA / FaissStorage.py
K00B404's picture
Upload 9 files
0061c9d verified
raw
history blame
42.5 kB
import os
import tempfile
from datetime import datetime
import webbrowser
from tkinter import Toplevel
import warnings
import faiss,logging
import numpy as np
import wandb
from typing import List, Dict, Any, Optional, Union
from git import Repo
import plotly.graph_objects as go
import numpy as np
from sklearn.decomposition import PCA
import requests
from rich import print as rp
from rich.progress import Progress, TextColumn, BarColumn, TimeRemainingColumn
from dotenv import load_dotenv, find_dotenv
import speech_recognition
from TTS.api import TTS
from sklearn.decomposition import PCA
from playsound import playsound
from hugchat import hugchat
from hugchat.login import Login
from langchain_core.documents import Document
from langchain_community.llms.huggingface_endpoint import HuggingFaceEndpoint
from langchain_community.llms.huggingface_hub import HuggingFaceHub
from langchain.chains.combine_documents import create_stuff_documents_chain
from langchain.chains import create_retrieval_chain
from langchain_community.document_loaders import (
PyPDFLoader,
UnstructuredHTMLLoader,
UnstructuredWordDocumentLoader,
TextLoader,
PythonLoader
)
from langchain.retrievers import TimeWeightedVectorStoreRetriever
from langchain_community.docstore.in_memory import InMemoryDocstore
from langchain.text_splitter import RecursiveCharacterTextSplitter, Language,CharacterTextSplitter
from langchain_huggingface import HuggingFaceEmbeddings
from langchain_community.vectorstores import FAISS
from langchain.vectorstores.base import VectorStore
from langchain.retrievers import MultiQueryRetriever, ContextualCompressionRetriever
from langchain.retrievers.self_query.base import SelfQueryRetriever
from langchain.retrievers.document_compressors import LLMChainExtractor, DocumentCompressorPipeline
from langchain_community.document_transformers import EmbeddingsRedundantFilter
from langchain.retrievers.document_compressors import EmbeddingsFilter
import plotly.graph_objs as go
from langchain.chains import LLMChain
# Load environment variables
load_dotenv(find_dotenv())
warnings.filterwarnings("ignore")
os.environ['FAISS_NO_AVX2'] = '1'
os.environ["USER_AGENT"] = os.getenv("USER_AGENT")
os.environ["HUGGINGFACEHUB_API_TOKEN"] = os.getenv("HUGGINGFACEHUB_API_TOKEN")
wandb.require("core")
# Import system prompts
from system_prompts import __all__ as prompts
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline, GPT2LMHeadModel, GPT2TokenizerFast
from langchain_huggingface import HuggingFacePipeline
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
class LLMChatBot:
def __init__(self, email, password, cookie_path_dir='./cookies/', default_llm=1, default_system_prompt='default_rag_prompt'):
self.email = email
self.password = password
self.current_model = 1
self.current_system_prompt=default_system_prompt
self.cookie_path_dir = cookie_path_dir
self.cookies = self.login()
self.default_llm = default_llm
self.chatbot = hugchat.ChatBot(cookies=self.cookies.get_dict(), default_llm=default_llm,system_prompt=prompts[default_system_prompt])
self.conversation_id=None
self.check_conv_id(self.conversation_id)
rp("[self.conversation_id:{self.conversation_id}]")
def check_conv_id(self, id=None):
if not self.conversation_id and not id:
self.conversation_id = self.chatbot.new_conversation(modelIndex=self.current_model,system_prompt=self.current_system_prompt)
else:
if id:
self.conversation_id=id
self.chatbot.change_conversation(self.conversation_id)
elif not self.chatbot.get_conversation_info(self.conversation_id) == self.chatbot.get_conversation_info():
self.chatbot.change_conversation(self.conversation_id)
return self.conversation_id
def login(self):
rp("Attempting to log in...")
sign = Login(self.email, self.password)
try:
cookies = sign.login(cookie_dir_path=self.cookie_path_dir, save_cookies=True)
rp("Login successful!")
return cookies
except Exception as e:
rp(f"Login failed: {e}")
rp("Attempting manual login with requests...")
self.manual_login()
raise
def manual_login(self):
login_url = "https://huggingface.co/login"
session = requests.Session()
response = session.get(login_url)
rp("Response Cookies:", response.cookies)
rp("Response Content:", response.content.decode())
csrf_token = response.cookies.get('csrf_token')
if not csrf_token:
rp("CSRF token not found in cookies.")
return
login_data = {
'email': self.email,
'password': self.password,
'csrf_token': csrf_token
}
response = session.post(login_url, data=login_data)
if response.ok:
rp("Manual login successful!")
else:
rp("Manual login failed!")
def setup_speech_recognition(self):
self.recognizer = speech_recognition.Recognizer()
def setup_tts(self, model_name="tts_models/en/ljspeech/fast_pitch"):
self.tts = TTS(model_name=model_name)
def chat(self, message):
return self.chatbot.chat(message)
def query(self,message, web_search=False, stream=False,use_cache=True):
return self.chatbot.query(
text=message,
web_search = web_search,
temperature = 0.1,
top_p = 0.95,
repetition_penalty = 1.2,
top_k = 50,
truncate = 1000,
watermark = False,
max_new_tokens = 1024,
stop = ["</s>"],
return_full_text = False,
stream = stream,
_stream_yield_all = False,
use_cache = False,
is_retry = False,
retry_count = 5,
conversation = None
)
def stream_response(self, message):
for resp in self.query(message, stream=True):
rp(resp)
def web_search(self, query):
query_result = self.query(query, web_search=True)
results = []
for source in query_result.web_search_sources:
results.append({
'link': source.link,
'title': source.title,
'hostname': source.hostname
})
return results
def create_new_conversation(self, switch_to=True):
return self.chatbot.new_conversation(switch_to=switch_to, modelIndex=self.current_model, system_prompt=self.current_system_prompt)
def get_remote_conversations(self):
return self.chatbot.get_remote_conversations(replace_conversation_list=True)
def get_local_conversations(self):
return self.chatbot.get_conversation_list()
def get_available_models(self):
return self.chatbot.get_available_llm_models()
def switch_model(self, index):
self.chatbot.switch_llm(index)
def switch_conversation(self, id):
self.conv_id = id
self.chatbot.change_conversation(self.conv_id)
def get_assistants(self):
return self.chatbot.get_assistant_list_by_page(1)
def switch_role(self, system_prompt, model_id=1):
self.chatbot.delete_all_conversations()
self.check_conv_id = self.chatbot.new_conversation(switch_to=True, system_prompt=system_prompt, modelIndex=model_id)
return self.check_conv_id
def __run__(self, message):
if not self.conversation_id:
self.conversation_id = self.chatbot.new_conversation(modelIndex=self.current_model,
system_prompt=self.current_system_prompt,
switch_to=True)
return self.query(message)
def __call__(self, message):
if not self.conversation_id:
self.conversation_id = self.chatbot.new_conversation(modelIndex=self.current_model,
system_prompt=self.current_system_prompt,
switch_to=True)
return self.chat(message)
class AdvancedVectorStore:
def __init__(self,
embedding_model: str = "all-MiniLM-L6-v2",
email: str = None,
password: str = None,
chunk_size=384,
chunk_overlap=0,
device='cpu',
normalize_embeddings=True,
log_level=logging.INFO,
log_file='AdvancedVectorStore.log',
logs_dir='./logs',
test_input='./test_input',
test_output='./test_output',
storage_dir='./vectorstore',
knowledge_dir='./knowledge',
repos_dir='./repos'
):
self.chunk_size = chunk_size
self.chunk_overlap = chunk_overlap
self.device = device
self.basic_splitter= RecursiveCharacterTextSplitter(chunk_size=self.chunk_size, chunk_overlap=self.chunk_overlap)
self.storage_dir=storage_dir
self.test_input=test_input
self.test_output=test_output
self.repos_dir=repos_dir
self.knowledge_dir=knowledge_dir
self.logs_dir=logs_dir
self.log_file=log_file
self.doc_ids = []
self.documents: List[Document] = []
self.embeddings = HuggingFaceEmbeddings(
model_name=embedding_model,
model_kwargs={'device': self.device},
encode_kwargs={'normalize_embeddings': normalize_embeddings}
)
self.qwen_llm = HuggingFaceHub(repo_id="Qwen/Qwen2-0.5B-Instruct", model_kwargs={"temperature": 0.5, "max_length": 512})
self.llm = HuggingFaceHub(repo_id="google-t5/t5-small", model_kwargs={"temperature": 0.5, "max_length": 512})
self.alpaca_llm = HuggingFaceHub(repo_id="reasonwang/google-flan-t5-small-alpaca", model_kwargs={"temperature": 0.1, "max_length": 512})
self.chatbot_llm = LLMChatBot(email, password, default_system_prompt= 'copilot_prompt') if email and password else None
rp("create_indexed_vectorstore:")
print(self.alpaca_llm("What is Deep Learning?"))
self.vectorstore, self.docstore, self.index = self.create_indexed_vectorstore(self.chunk_size)
self.document_count = 0
self.chunk_count = 0
self.setup_folders()
self.setup_logging(log_level,os.path.join(self.logs_dir,self.log_file))
self.logger.info("Initializing AdvancedVectorStore")
self.set_bot_role()
def setup_logging(self,level,file):
self.logger = logging.getLogger(__name__)
self.logger.setLevel(level)
# Create console handler and set level
ch = logging.StreamHandler()
ch.setLevel(level)
# Create file handler and set level
fh = logging.FileHandler(file)
fh.setLevel(level)
# Create formatter
formatter = logging.Formatter('%(asctime)s - %(name)s - %(levelname)s - %(message)s')
# Add formatter to console handler
ch.setFormatter(formatter)
# Add formatter to file handler
fh.setFormatter(formatter)
# Add handlers to logger
self.logger.addHandler(ch)
self.logger.addHandler(fh)
self.logger.info("Done settingload_documents_folder up logger for {__name__} [AdvancedVectorStore]")
def setup_folders(self):
self.dirs = [
self.test_input,
self.test_output,
self.logs_dir,
self.storage_dir,
self.knowledge_dir,
self.repos_dir
]
for d in self.dirs:
os.makedirs(d, exist_ok=True)
def set_bot_role(self,prompt='default_rag_prompt',context="",history=""):
self.chatbot_llm.current_system_prompt = prompts[prompt].replace("<<VSCONTEXT>>",context).replace("<<WSCONTEXT>>",history)
self.current_conversation_id=self.chatbot_llm.chatbot.new_conversation(system_prompt=self.chatbot_llm.current_system_prompt,
modelIndex=self.chatbot_llm.current_model,
switch_to=True)
#self.logger.info(f"Setting Bot Role!\n[{prompt}]")
""" result=self.chatbot_llm("Confirm you understand the TASK.")
self.logger.info(f"Test results chatbot role set:{result}") """
#rp(f"[Result:{result}]")
def load_documents(self, directory: str) -> None:
"""Load documents from a directory with specific loaders for each file type."""
loaders = {
".py": (PythonLoader, {}),
".txt": (TextLoader, {}),
".pdf": (PyPDFLoader, {}),
".html": (UnstructuredHTMLLoader, {}),
".docx": (UnstructuredWordDocumentLoader, {})
}
for root, _, files in os.walk(directory):
for file in files:
file_path = os.path.join(root, file)
file_extension = os.path.splitext(file)[1].lower()
if file_extension in loaders:
# Check if the file can be read as UTF-8
try:
with open(file_path, 'r', encoding='utf-8') as f:
f.read()
except (UnicodeDecodeError, IOError):
rp(f"Skipping non-UTF-8 or unreadable file: {file_path}")
continue
loader_class, loader_args = loaders[file_extension]
loader = loader_class(file_path, **loader_args)
self.documents.extend(loader.load())
def split_documents(self) -> None:
"""Split documents using appropriate splitters for each file type."""
splitters = {
".py": RecursiveCharacterTextSplitter.from_language(language=Language.PYTHON, chunk_size=self.chunk_size, chunk_overlap=self.chunk_overlap),
".txt": RecursiveCharacterTextSplitter(chunk_size=self.chunk_size, chunk_overlap=self.chunk_overlap),
".pdf": RecursiveCharacterTextSplitter(chunk_size=self.chunk_size, chunk_overlap=self.chunk_overlap),
".html": RecursiveCharacterTextSplitter.from_language(language=Language.HTML, chunk_size=self.chunk_size, chunk_overlap=self.chunk_overlap),
".docx": RecursiveCharacterTextSplitter(chunk_size=self.chunk_size, chunk_overlap=self.chunk_overlap)
}
split_docs = []
for doc in self.documents:
file_extension = os.path.splitext(doc.metadata.get("source", ""))[1].lower()
splitter = splitters.get(file_extension, RecursiveCharacterTextSplitter(chunk_size=self.chunk_size, chunk_overlap=self.chunk_overlap))
split_docs.extend(splitter.split_documents([doc]))
self.documents = split_docs
def create_vectorstore(self, store_type: str = "FAISS") -> None:
"""Create a vectorstore of the specified type."""
if store_type == "FAISS":
self.vectorstore = FAISS.from_documents(self.documents, self.embeddings)
else:
raise ValueError(f"Unsupported vectorstore type: {store_type}")
def create_indexed_vectorstore(self,embedding_size):
rp("Creating indexed vectorstore...")
#embedding_size = 384 # Size for all-MiniLM-L6-v2 embeddings
index = faiss.IndexFlatL2(embedding_size)
docstore = InMemoryDocstore({})
vectorstore = FAISS(
self.embeddings.embed_query,
index,
docstore,
{}
)
rp("Indexed vectorstore created.")
return vectorstore, docstore, index
def get_self_query_retriever(self, k: int = 4) -> SelfQueryRetriever:
"""Get a SelfQueryRetriever."""
if not self.vectorstore:
raise ValueError("Vectorstore not initialized. Call create_vectorstore() first.")
return SelfQueryRetriever.from_llm(
self.chatbot_llm.chatbot,
self.vectorstore,
document_contents="Document about various topics.",
metadata_field_info=[],
search_kwargs={"k": k}
)
def get_contextual_t5_compression_retriever(self, k: int = 4, similarity_threshold=0.78) -> ContextualCompressionRetriever:
"""Get a ContextualCompressionRetriever."""
base_compressor = LLMChainExtractor.from_llm(self.llm)
redundant_filter = EmbeddingsRedundantFilter(embeddings=self.embeddings, similarity_threshold=similarity_threshold)
relevant_filter = EmbeddingsFilter(embeddings=self.embeddings, similarity_threshold=similarity_threshold)
return ContextualCompressionRetriever(
name="CompressedRetriever",
base_compressor=DocumentCompressorPipeline(transformers=[self.basic_splitter, base_compressor, redundant_filter, relevant_filter]),
base_retriever=self.get_basic_retriever(k=k)
)
def get_contextual_qwen_compression_retriever(self, k=4, similarity_threshold=0.78):
# Initialize the components for the compressor pipeline
base_compressor = LLMChainExtractor.from_llm(self.qwen_llm)
redundant_filter = EmbeddingsRedundantFilter(embeddings=self.embeddings, similarity_threshold=similarity_threshold)
relevant_filter = EmbeddingsFilter(embeddings=self.embeddings, similarity_threshold=similarity_threshold)
# Create the ContextualCompressionRetriever
return ContextualCompressionRetriever(
name="CompressedRetriever",
base_compressor= DocumentCompressorPipeline(transformers=[self.basic_splitter, base_compressor, redundant_filter, relevant_filter]),
base_retriever=self.get_basic_retriever(k=k)
)
def get_contextual_compression_retriever(self, k: int = 4,similarity_threshold=0.78) -> ContextualCompressionRetriever:
"""Get a ContextualCompressionRetriever."""
base_compressor = LLMChainExtractor.from_llm(self.alpaca_llm)
redundant_filter = EmbeddingsRedundantFilter(embeddings=self.embeddings, similarity_threshold=similarity_threshold)
relevant_filter = EmbeddingsFilter(embeddings=self.embeddings, similarity_threshold=similarity_threshold)
return ContextualCompressionRetriever(
name="CompressedRetriever",
base_compressor=DocumentCompressorPipeline(transformers=[self.basic_splitter, base_compressor, redundant_filter, relevant_filter]),
base_retriever=self.get_basic_retriever(k=k)
)
def get_basic_retriever(self, k: int = 4) -> VectorStore:
"""Get a basic retriever from the vectorstore."""
if not self.vectorstore:
raise ValueError("Vectorstore not initialized. Call create_vectorstore() first.")
return self.vectorstore.as_retriever(search_kwargs={"k": k})
def get_multi_query_retriever(self, k: int = 4) -> MultiQueryRetriever:
"""Get a MultiQueryRetriever."""
if not self.vectorstore:
raise ValueError("Vectorstore not initialized. Call create_vectorstore() first.")
return MultiQueryRetriever.from_llm(
retriever=self.vectorstore.as_retriever(search_kwargs={"k": k}),
llm=self.chatbot_llm
)
def get_timed_retriever(self, k=1, decay_rate=0.0000000000000000000000001):
return TimeWeightedVectorStoreRetriever(
vectorstore=self.vectorstore, decay_rate=decay_rate, k=k
)
def set_current_retriever(self,mode='basic',k=4,sim_rate=0.78):
if mode == 'compressed':
retriever = self.get_contextual_compression_retriever(k, sim_rate)
elif mode == 'qwen_compressed':
retriever = self.get_contextual_qwen_compression_retriever(k, sim_rate)
elif mode == 't5_compressed':
retriever = self.get_contextual_t5_compression_retriever(k, sim_rate)
elif mode == 'self_query':
retriever = self.get_self_query_retriever(k)
elif mode == 'multi_query':
retriever = self.get_multi_query_retriever(k)
elif mode == 'time':
retriever = self.get_timed_retriever(k=1)
else:
retriever = self.get_basic_retriever(k)
#rp(retriever.get_prompts)
return retriever
def search(self, query: str, mode='basic', retriever: Optional[Any] = None, k: int = 4, sim_rate: float = 0.78) -> List[Document]:
"""Search the vectorstore using the specified retriever."""
if not retriever:
retriever = self.set_current_retriever(mode=mode, k=k, sim_rate=sim_rate)
return retriever.get_relevant_documents(query)
def add_documents(self, documents: List[Document]) -> None:
import uuid
"""Add new documents to the existing vectorstore."""
with Progress(
TextColumn("[progress.description]{task.description}"),
BarColumn(),
TextColumn("[green][progress.percentage]{task.percentage:>3.0f}%"),
TimeRemainingColumn()
) as progress:
task = progress.add_task("[cyan]Adding documents to vectorstore...", total=len(documents))
for id, doc in enumerate(documents):
#self.vectorstore.add_documents([doc])
metadata = doc.metadata
if not metadata:
metadata = {}
metadata["last_accessed_at"] = datetime.now()
new_doc = Document(page_content=doc.page_content, metadata=metadata)
nr=id
id = str(uuid.uuid4())
self.vectorstore.docstore.add({id: new_doc})
self.doc_ids.append(id)
self.set_current_retriever(mode='time', k=1).add_documents([new_doc])
total = self.index.ntotal
#self.logger.info(f"Added doc to vectorstore {new_doc.metadata['last_accessed_at']} with {total} id's so far.")
self.logger.info(f"Added doc to docstore[{nr}/{len(self.documents)}] with Id:{id} Path:{new_doc.metadata['source']}")
progress.update(task, advance=1)
rp(f"Added {len(documents)} documents to the vectorstore with index in doc_ids.")
def delete_documents(self, document_ids: List[str]) -> None:
"""Delete documents from the vectorstore by their IDs."""
for id in document_ids:
#self.logger.info(f"[Deleting DocumenId{id}...]")
self.vectorstore.delete(document_ids)
#self.logger.info(f"[Done! Saving Faiss...{id}]")
def save_vectorstore(self, path: str) -> None:
"""Save the vectorstore to disk."""
if not self.vectorstore:
raise ValueError("Vectorstore not initialized. Call create_vectorstore() first.")
#self.logger.info("[Saving Faiss...]")
self.vectorstore.save_local(path)
#self.logger.info(f"[Done! Saving Faiss to:{path}]")
def load_vectorstore(self, path: str) -> None:
"""Load the vectorstore from disk."""
#self.logger.info("Loading Faiss...")
self.vectorstore = FAISS.load_local(folder_path=path,
embeddings=self.embeddings,
allow_dangerous_deserialization=True)
#self.logger.info(f"[Done! Loading Faiss from:{path}]")
def create_retrieval_chain(self, prompt: str = "default_rag_prompt", retriever: Optional[Any] = None) -> Any:
"""Create a retrieval chain using the specified prompt and retriever."""
if not retriever:
retriever = self.get_basic_retriever()
combine_docs_chain = create_stuff_documents_chain(self.chatbot_llm, prompt=prompts[prompt])
return create_retrieval_chain(retriever, combine_docs_chain)
def run_retrieval_chain(self, chain: Any, query: str) -> Dict[str, Any]:
"""Run a retrieval chain with the given query."""
return chain.invoke({"input": query})
def generate_3d_scatterplot(self, num_points=1000):
"""
Generate a 3D scatter plot of the vector store content and log it to wandb.
:param num_points: Maximum number of points to plot (default: 1000)
:return: None (logs the plot to wandb)
"""
all_docs = self.get_all_documents()
if not all_docs:
raise ValueError("No documents found in the vector store.")
# Extract vectors and metadata from documents
vectors = []
doc_ids = []
for doc in all_docs:
if hasattr(doc, 'embedding') and doc.embedding is not None:
vectors.append(doc.embedding)
else:
vectors.append(self.embeddings.embed_query(doc.page_content))
doc_ids.append(doc.metadata.get('id', 'Unknown'))
vectors = np.array(vectors)
# If we have more vectors than requested points, sample randomly
if len(vectors) > num_points:
indices = np.random.choice(len(vectors), num_points, replace=False)
vectors = vectors[indices]
doc_ids = [doc_ids[i] for i in indices]
# Perform PCA to reduce to 3 dimensions
pca = PCA(n_components=3)
vectors_3d = pca.fit_transform(vectors)
# Initialize wandb run
wandb.init(project="vector_store_visualization")
# Create the Plotly figure
fig = go.Figure(data=[go.Scatter3d(
x=vectors_3d[:, 0],
y=vectors_3d[:, 1],
z=vectors_3d[:, 2],
mode="markers",
marker=dict(
size=[28.666666666666668, 20.666666666666668, 15.333333333333334, 17.666666666666668, 19.0, 17.666666666666668, 26.0, 21.0, 21.666666666666668, 27.0, 21.666666666666668, 16.666666666666668, 27.0, 14.0, 29.666666666666668, 22.0, 16.0, 28.0, 27.0, 25.333333333333332],
color=[28.666666666666668, 20.666666666666668, 15.333333333333334, 17.666666666666668, 19.0, 17.666666666666668, 26.0, 21.0, 21.666666666666668, 27.0, 21.666666666666668, 16.666666666666668, 27.0, 14.0, 29.666666666666668, 22.0, 16.0, 28.0, 27.0, 25.333333333333332],
colorscale='Viridis',
showscale=True,
colorbar=dict(x=0),
cmin=14,
cmax=20
),
text=self.doc_ids,
hoverinfo="text",
name="Document Vectors",
)])
# Update layout
fig.update_layout(
showlegend=True,
scene=dict(
xaxis_title="X Axis",
yaxis_title="Y Axis",
zaxis_title="Z Axis"
),
width=1200,
height=1000,
)
# Log the plot to wandb
wandb.log({"3D Scatter Plot": fig})
# Finish the wandb run
wandb.finish()
def load_documents_folder(self, folder_path):
rp("[Loading documents from cloned repository]")
self.load_documents(folder_path)
self.document_count=len(self.documents)
rp(f"Splitting {self.document_count} documents")
self.split_documents()
self.chunk_count=len(self.documents)
rp(f"Adding {self.chunk_count} document chunks to vectorstore")
self.add_documents(self.documents)
def load_github_repo(self, repo_url: str) -> None:
"""
Clone a GitHub repository to a temporary folder, load documents, and remove the folder.
"""
split=repo_url.split('/')
repo_name = split.pop()
author_name = split.pop()
new_repo_path=os.path.join(self.repos_dir,f"{author_name}_{repo_name}")
if not os.path.exists(new_repo_path):
rp(f'Cloning repository {repo_url} to {new_repo_path}')
Repo.clone_from(repo_url, new_repo_path)
rp("Loading documents from cloned repository")
self.load_documents(new_repo_path)
rp(f"Splitting {len(self.documents)} documents into chunks")
self.split_documents()
rp(f"Adding {len(self.documents)} documents to vectorstore")
self.add_documents(self.documents)
self.save_vectorstore(self.storage_dir)
self.load_vectorstore(self.storage_dir)
rp("Temporary folder removed")
else:
rp(f"Repository {repo_url} already exists in {new_repo_path}")
self.load_vectorstore(self.storage_dir)
def get_all_documents(self):
"""
Fetch all documents from the document store.
"""
all_docs = []
# Number of vectors in the index
num_vectors = self.index.ntotal
# Assuming 'd' is the dimensionality of the vectors
d = self.index.d
#rp(f"D:{d}")
# Retrieve all vectors (this part is straightforward if you have access to the original vectors)
retrieved_vectors = np.empty((num_vectors, d), dtype='float32')
for i in range(num_vectors):
retrieved_vectors[i] = self.index.reconstruct(i)
# Assuming you have a way to get the document IDs
# In a real scenario, you would maintain a mapping of FAISS index positions to document IDs
# Example: you might have an attribute like 'self.doc_ids' which is a list of IDs
retrieved_ids = self.doc_ids[:num_vectors] # Ensure you have this attribute properly maintained
#rp(f"Retrieved ids{retrieved_ids}")
# Fetch documents using the retrieved IDs
retrieved_docs = [self.docstore.search(doc_id) for doc_id in retrieved_ids]
# Collect all documents
all_docs.extend(retrieved_docs)
#for doc_id, doc in zip(retrieved_ids, retrieved_docs):
#rp(f"ID: {doc_id}, Document.page_content: {doc.page_content}, Document.metadata: {doc.metadata}")
return all_docs
def test_chat(self,text,context='This is a chat with a nice Senior programmer.',history='Your Birth as fresh outof the box agent.'):
self.set_bot_role(context=context,history=history)
return self.chatbot_llm(text)
def chat(self, message: str) -> str:
"""
Send a message to the HugChat bot and get a response.
:param message: The message to send to the bot
:return: The bot's response
"""
if not self.chatbot_llm:
raise ValueError("HugChat bot not initialized. Provide email and password when creating AdvancedVectorStore.")
return self.chatbot_llm.chat(message)
def setup_speech_recognition(self):
"""Set up speech recognition for the HugChat bot."""
if not self.chatbot_llm:
raise ValueError("HugChat bot not initialized. Provide email and password when creating AdvancedVectorStore.")
self.chatbot_llm.setup_speech_recognition()
def setup_tts(self, model_name="tts_models/en/ljspeech/fast_pitch"):
"""Set up text-to-speech for the HugChat bot."""
if not self.chatbot_llm:
raise ValueError("HugChat bot not initialized. Provide email and password when creating AdvancedVectorStore.")
self.chatbot_llm.setup_tts(model_name)
def voice_chat(self):
"""
Initiate a voice chat session with the HugChat bot.
"""
if not self.chatbot_llm or not hasattr(self.chatbot_llm, 'recognizer') or not hasattr(self.chatbot_llm, 'tts'):
raise ValueError("Speech recognition and TTS not set up. Call setup_speech_recognition() and setup_tts() first.")
rp("Voice chat initiated. Speak your message (or say 'exit' to end the chat).")
while True:
with speech_recognition.Microphone() as source:
rp("Listening...")
audio = self.chatbot_llm.recognizer.listen(source)
try:
user_input = self.chatbot_llm.recognizer.recognize_google(audio)
rp(f"You said: {user_input}")
if user_input.lower() == 'exit':
rp("Ending voice chat.")
break
response = self.chat(user_input)
rp(f"Bot: {response}")
# Generate speech from the bot's response
speech_file = "bot_response.wav"
self.chatbot_llm.tts.tts_to_file(text=response, file_path=speech_file)
playsound(speech_file)
os.remove(speech_file) # Clean up the temporary audio file
except speech_recognition.UnknownValueError:
rp("Sorry, I couldn't understand that. Please try again.")
except speech_recognition.RequestError as e:
rp(f"Could not request results from the speech recognition service; {e}")
def rag_chat(self, query: str, prompt: str = "default_rag_prompt") -> str:
"""
Perform a RAG (Retrieval-Augmented Generation) chat using the vectorstore and HugChat bot.
:param query: The user's query
:param prompt: The prompt to use for the retrieval chain (default: "default_rag_prompt")
:return: The bot's response
"""
if not self.vectorstore:
raise ValueError("Vectorstore not initialized. Call create_vectorstore() first.")
retriever = self.get_basic_retriever()
chain = self.create_retrieval_chain(prompt, retriever)
result = self.run_retrieval_chain(chain, query)
return result['answer']
def search_web(self):
search_query = input("Enter your web search query: ")
future_date = "July 12, 2024"
search_url = f"https://www.google.com/search?q={search_query}+before:{future_date}"
webbrowser.open(search_url)
rp(f"Search results for '{search_query}' on {future_date}:")
rp("=" * 50)
rp(search_url)
rp("=" * 50)
def advanced_rag_chatbot(self):
rp("Welcome to the Advanced RAG Chatbot!")
rp("This chatbot uses a compressed retriever and integrates all components of the vector store.")
rp("Type 'exit' to end the conversation.")
# Ensure the vectorstore is initialized
if self.vectorstore is None:
rp("Initializing vector store...")
self.vectorstore, self.docstore, self.index = self.create_indexed_vectorstore(self.chunk_size)
# Create a compressed retriever
# compressed_retriever = self.get_contextual_compression_retriever(k=5, similarity_threshold=0.75)
mode='basic'
k=5
similarity_threshold=0.75
retriever = self.set_current_retriever(mode=mode, k=k, sim_rate=similarity_threshold)
#basic_retriever = self.get_basic_retriever(k=4)
# Initialize conversation history
conversation_history = []
while True:
user_input = input("\nYou: ").strip()
if user_input.lower() == 'exit':
rp("Thank you for using the Advanced RAG Chatbot. Goodbye!")
break
rp("# Step 1: Retrieve relevant documents")
retrieved_docs = self.get_basic_retriever(k=4).get_relevant_documents(user_input)
rp("# Step 2: Prepare context from retrieved documents")
context = "\n".join([doc.page_content for doc in retrieved_docs])
rp("# Step 3: Prepare the prompt")
#prompt = prompts['default_rag_prompt']
self.set_bot_role(context=context, history=' '.join(conversation_history[-5:]))
rp("# Step 4: Generate response using the chatbot")
response = self.chatbot_llm(f"User:{user_input}\n")
rp(f"Chatbot: {response}")
# Update conversation history
conversation_history.append(f"User: {user_input}")
conversation_history.append(f"Chatbot: {response}")
# Step 5: Demonstrate use of individual components
rp("\nAdditional Information:")
rp(f'- Number of documents in docstore: {len(self.docstore.search("* *"))}')
rp(f"- Number of vectors in index: {self.index.ntotal}")
# Demonstrate direct use of vectorstore for similarity search
similar_docs = self.vectorstore.similarity_search(user_input, k=1)
similar_docs = self.vectorstore.similarity_search_with_relevance_scores(user_input,k=1)
if similar_docs:
rp(type(similar_docs))
rp(f"-[Most similar document: [{similar_docs[0].metadata.get('source', 'Unknown')}]]-")
# Generate a 3D scatter plot of the vectorstore content
#avs.generate_3d_scatterplot_wandb()
avs.generate_3d_scatterplot()
# Optional: Add user feedback loop
feedback = input("Was this response helpful? (yes/no): ").strip().lower()
if feedback == 'no':
rp("I'm sorry the response wasn't helpful. Let me try to improve it.")
# Here you could implement logic to refine the response or adjust the retrieval process
with open(file="./feedback_NO.txt",mode="a+")as f:
f.write(f"chat_feedback_NO\nChatHistory--->{' '.join(conversation_history[-10:])}")
# Example usage:
if __name__ == "__main__":
email = os.getenv("EMAIL")
password = os.getenv("PASSWD")
github_token = os.getenv("GITHUB_TOKEN")
# Initialize AdvancedVectorStore with HugChat bot
avs = AdvancedVectorStore(email=email, password=password)
# Create the indexed vectorstore
#avs.create_indexed_vectorstore()
# Clone a GitHub repository and load its contents
# avs.load_documents_folder("/nr_ywo/coding/voice_chat_rag_web/venv/lib/python3.10/site-packages/huggingface_hub/inference")
avs.load_documents_folder("/nr_ywo/coding/voice_chat_rag_web/venv/lib/python3.10/site-packages/hugchat")
avs.load_documents_folder("/nr_ywo/coding/voice_chat_rag_web/venv/lib/python3.10/site-packages/langchain/agents")
avs.load_documents_folder("/nr_ywo/coding/voice_chat_rag_web/venv/lib/python3.10/site-packages/langchain_experimental/autonomous_agents")
#avs.chatbot_llm.load_documents("/nr_ywo/coding/voice_chat_rag_web/test_input")
# avs.load_github_repo("https://github.com/bxck75/voice_chat_rag_web")
avs.save_vectorstore(path=avs.storage_dir)
avs.load_vectorstore(path=avs.storage_dir)
# rp document and chunk counts
#rp(f"Total documents: {avs.chunk_count / avs.chunk_size}")
#rp(f"Total chunks: {avs.chunk_count}")
#avs.logger.info(avs.chatbot_llm.current_model)
#avs.logger.info(avs.chatbot_llm.current_system_prompt)
retriever=avs.set_current_retriever(mode='basic',k=4)
comptriever=avs.set_current_retriever(mode='compression',k=4,sim_rate=0.87)
timetriever=avs.set_current_retriever(mode='time',k=1)
q="Demonstrate your knowledge of developing advanced AI scripts in OOP python. try to come up with cutting edge ideas"
rel_docs=retriever.invoke(input=q)
#okrp(f"[Raw Knowledge Retrieved:{rel_docs}]")
# Start the advanced RAG chatbot
avs.advanced_rag_chatbot()
# Perform a RAG chat
#rag_response = avs.rag_chat(query="Explain the concept of neural networks.")
#rp("RAG chat response:", rag_response)
# Set up speech recognition and TTS for voice chat
#avs.setup_speech_recognition()
#avs.setup_tts()
# Start a voice chat session
#avs.voice_chat()
"""
# Using different retrievers
multi_query_retriever = avs.get_multi_query_retriever()
results = avs.search("What is deep learning?", mode="multi_query")
rp("Multi-query retriever results:", results)
self_query_retriever = avs.get_self_query_retriever()
results = avs.search("Find documents about reinforcement learning", self_query_retriever)
rp("Self-query retriever results:", results)
contextual_compression_retriever = avs.get_contextual_compression_retriever()
results = avs.search("Explain the difference between supervised and unsupervised learning", contextual_compression_retriever)
rp("Contextual compression retriever results:", results)
"""
""" # Perform a basic search
k = 4
similarity_threshold = 0.78
q = "What is machine learning?"
basic_results = avs.search(q, mode='basic', k=k)
rp("Basic search results:", basic_results)
rp("self_query search results:", self_query_results)
rp("multi_query search results:", multi_results)
rp("Compressed search results:", commpressed_results)
"""
""" This advanced example demonstrates:
Use of the compressed retriever for efficient document retrieval.
Integration of conversation history for context-aware responses.
Direct use of the vectorstore for similarity search.
Access to the docstore and index for additional information.
A feedback loop to potentially improve responses (though the improvement logic is not implemented in this example).
This chatbot loop showcases how all components of the system can work together to provide informative responses based on the loaded documents. It also demonstrates how you can access and use individual components (docstore, index, vectorstore) for additional functionality or information.
To further optimize this system, you could consider:
Implementing caching mechanisms to speed up repeated queries.
Adding more sophisticated feedback handling to improve retrieval and response generation over time.
Implementing dynamic index updates if new information becomes available during the chat session.
Adding options for users to see the sources of information or request more details on specific topics.
This example provides a solid foundation that you can further customize and expand based on your specific needs and use cases. """