Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,652 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Here is one of the many custom scripts i build.
|
2 |
+
# Costs to use it is exactly 0
|
3 |
+
# Even runs with llama3.1 70B or 405B..and few more...
|
4 |
+
|
5 |
+
import streamlit as st
|
6 |
+
from llm_chatbot import LLMChatBot
|
7 |
+
from streamlit_option_menu import option_menu
|
8 |
+
import speech_recognition as sr
|
9 |
+
import pyttsx3
|
10 |
+
import os
|
11 |
+
import getpass
|
12 |
+
from uuid import uuid4
|
13 |
+
import faiss
|
14 |
+
import numpy as np
|
15 |
+
import requests
|
16 |
+
import io
|
17 |
+
import warnings
|
18 |
+
import torch
|
19 |
+
import pickle
|
20 |
+
import asyncio
|
21 |
+
import json
|
22 |
+
from git import Repo
|
23 |
+
from rich import print as rp
|
24 |
+
from typing import Union, List, Generator, Any, Mapping, Optional, Dict
|
25 |
+
from requests.sessions import RequestsCookieJar
|
26 |
+
from dotenv import load_dotenv, find_dotenv
|
27 |
+
from langchain import hub
|
28 |
+
from langchain_core.documents import Document
|
29 |
+
from langchain.chains.combine_documents import create_stuff_documents_chain
|
30 |
+
from langchain.chains import create_retrieval_chain
|
31 |
+
from langchain_community.document_loaders import DirectoryLoader
|
32 |
+
from langchain.text_splitter import RecursiveCharacterTextSplitter, Language
|
33 |
+
from langchain_huggingface import HuggingFaceEmbeddings
|
34 |
+
from langchain_community.vectorstores import Chroma, FAISS
|
35 |
+
from langchain.vectorstores.base import VectorStore
|
36 |
+
from langchain.retrievers import MultiQueryRetriever
|
37 |
+
from langchain.retrievers.self_query.base import SelfQueryRetriever
|
38 |
+
from langchain.llms import BaseLLM
|
39 |
+
from langchain.retrievers import ContextualCompressionRetriever
|
40 |
+
from langchain.retrievers.document_compressors import LLMChainExtractor
|
41 |
+
from langchain.retrievers.document_compressors import DocumentCompressorPipeline
|
42 |
+
from langchain_community.document_transformers import EmbeddingsRedundantFilter
|
43 |
+
from langchain_text_splitters import CharacterTextSplitter
|
44 |
+
from langchain.retrievers.document_compressors import EmbeddingsFilter
|
45 |
+
from langchain.memory.buffer import ConversationBufferMemory
|
46 |
+
from langchain.chains import StuffDocumentsChain, LLMChain, ConversationalRetrievalChain
|
47 |
+
from uber_toolkit_class import UberToolkit
|
48 |
+
from glob import glob
|
49 |
+
import numpy as np
|
50 |
+
import pandas as pd
|
51 |
+
import plotly.graph_objects as go
|
52 |
+
import plotly.express as px
|
53 |
+
from plotly.subplots import make_subplots
|
54 |
+
import plotly.io as pio
|
55 |
+
from sklearn.decomposition import PCA
|
56 |
+
from sklearn.preprocessing import MinMaxScaler
|
57 |
+
from langchain_core.documents import Document
|
58 |
+
from scipy.stats import gaussian_kde
|
59 |
+
from huggingface_hub import InferenceClient
|
60 |
+
from hugchat import hugchat
|
61 |
+
from hugchat.login import Login
|
62 |
+
from hugchat.message import Message
|
63 |
+
from hugchat.types.assistant import Assistant
|
64 |
+
from hugchat.types.model import Model
|
65 |
+
from hugchat.types.message import MessageNode, Conversation
|
66 |
+
from langchain_community.document_loaders import TextLoader
|
67 |
+
from TTS.api import TTS
|
68 |
+
import time
|
69 |
+
from playsound import playsound
|
70 |
+
from system_prompts import __all__ as prompts
|
71 |
+
from profiler import VoiceProfileManager, VoiceProfile
|
72 |
+
|
73 |
+
# Load environment variables
|
74 |
+
load_dotenv(find_dotenv())
|
75 |
+
|
76 |
+
class ChatbotApp:
|
77 |
+
|
78 |
+
def __init__(self, email, password, default_llm=1):
|
79 |
+
|
80 |
+
self.email = email
|
81 |
+
|
82 |
+
self.password = password
|
83 |
+
|
84 |
+
self.default_llm = default_llm
|
85 |
+
|
86 |
+
self.embeddings = HuggingFaceEmbeddings(
|
87 |
+
|
88 |
+
model_name="all-MiniLM-L6-v2",
|
89 |
+
|
90 |
+
model_kwargs={'device': 'cpu'},
|
91 |
+
|
92 |
+
encode_kwargs={'normalize_embeddings': True}
|
93 |
+
|
94 |
+
)
|
95 |
+
|
96 |
+
self.vectorstore = None
|
97 |
+
|
98 |
+
|
99 |
+
def create_vectorstore_from_github(self):
|
100 |
+
|
101 |
+
repo_url = "YOUR_REPO_URL"
|
102 |
+
|
103 |
+
local_repo_path = self.clone_github_repo(repo_url)
|
104 |
+
|
105 |
+
loader = DirectoryLoader(path=local_repo_path, glob=f"**/*", show_progress=True, recursive=True)
|
106 |
+
|
107 |
+
loaded_files = loader.load()
|
108 |
+
|
109 |
+
documents = [Document(page_content=file_content) for file_content in loaded_files]
|
110 |
+
|
111 |
+
text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=0)
|
112 |
+
|
113 |
+
split_documents = text_splitter.split_documents(documents)
|
114 |
+
|
115 |
+
texts = [doc.page_content for doc in split_documents]
|
116 |
+
|
117 |
+
print(f"Texts for embedding: {texts}") # Debug print
|
118 |
+
|
119 |
+
self.vectorstore = FAISS.from_texts(texts, self.embeddings)
|
120 |
+
|
121 |
+
|
122 |
+
def create_vectorstore(self, docs):
|
123 |
+
|
124 |
+
|
125 |
+
|
126 |
+
text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=0)
|
127 |
+
|
128 |
+
# Wrap text content in Document objects
|
129 |
+
|
130 |
+
documents = [Document(page_content=doc) for doc in docs]
|
131 |
+
|
132 |
+
# Split documents using the text splitter
|
133 |
+
|
134 |
+
split_documents = text_splitter.split_documents(documents)
|
135 |
+
|
136 |
+
# Convert split documents back to plain text
|
137 |
+
|
138 |
+
texts = [doc.page_content for doc in split_documents]
|
139 |
+
|
140 |
+
vectorstore = FAISS.from_texts(texts, self.setup_embeddings())
|
141 |
+
|
142 |
+
return vectorstore
|
143 |
+
|
144 |
+
|
145 |
+
|
146 |
+
def setup_session_state(self):
|
147 |
+
|
148 |
+
if 'chat_history' not in st.session_state:
|
149 |
+
|
150 |
+
st.session_state.chat_history = []
|
151 |
+
|
152 |
+
if 'voice_mode' not in st.session_state:
|
153 |
+
|
154 |
+
st.session_state.voice_mode = False
|
155 |
+
|
156 |
+
if 'vectorstore' not in st.session_state:
|
157 |
+
|
158 |
+
st.session_state.vectorstore = None
|
159 |
+
|
160 |
+
if 'retriever' not in st.session_state:
|
161 |
+
|
162 |
+
st.session_state.retriever = None
|
163 |
+
|
164 |
+
if 'compression_retriever' not in st.session_state:
|
165 |
+
|
166 |
+
st.session_state.compression_retriever = None
|
167 |
+
|
168 |
+
|
169 |
+
|
170 |
+
def text_to_speech(self, text):
|
171 |
+
|
172 |
+
self.engine.say(text)
|
173 |
+
|
174 |
+
self.engine.runAndWait()
|
175 |
+
|
176 |
+
|
177 |
+
|
178 |
+
def speech_to_text(self):
|
179 |
+
|
180 |
+
r = sr.Recognizer()
|
181 |
+
|
182 |
+
with sr.Microphone() as source:
|
183 |
+
|
184 |
+
st.write("Listening...")
|
185 |
+
|
186 |
+
audio = r.listen(source)
|
187 |
+
|
188 |
+
try:
|
189 |
+
|
190 |
+
text = r.recognize_google(audio)
|
191 |
+
|
192 |
+
return text
|
193 |
+
|
194 |
+
except:
|
195 |
+
|
196 |
+
return "Sorry, I didn't catch that."
|
197 |
+
|
198 |
+
|
199 |
+
def setup_embeddings(self):
|
200 |
+
|
201 |
+
return HuggingFaceEmbeddings(
|
202 |
+
|
203 |
+
model_name="all-MiniLM-L6-v2",
|
204 |
+
|
205 |
+
model_kwargs={'device': 'cpu'},
|
206 |
+
|
207 |
+
encode_kwargs={'normalize_embeddings': True}
|
208 |
+
|
209 |
+
)
|
210 |
+
|
211 |
+
|
212 |
+
def create_vector_store(self, docs):
|
213 |
+
|
214 |
+
text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=0)
|
215 |
+
|
216 |
+
# Wrap text content in Document objects
|
217 |
+
|
218 |
+
documents = [Document(page_content=doc) for doc in docs]
|
219 |
+
|
220 |
+
# Split documents using the text splitter
|
221 |
+
|
222 |
+
split_documents = text_splitter.split_documents(documents)
|
223 |
+
|
224 |
+
print(f"Split documents: {split_documents}") # Debug print
|
225 |
+
|
226 |
+
# Convert split documents back to plain text
|
227 |
+
|
228 |
+
texts = [doc.page_content for doc in split_documents]
|
229 |
+
|
230 |
+
print(f"Texts: {texts}") # Debug print
|
231 |
+
|
232 |
+
if not texts:
|
233 |
+
|
234 |
+
print("No valid texts found for embedding. Check your repository content.")
|
235 |
+
|
236 |
+
return
|
237 |
+
|
238 |
+
|
239 |
+
try:
|
240 |
+
|
241 |
+
self.vectorstore = FAISS.from_texts(texts, self.embeddings)
|
242 |
+
|
243 |
+
print("Vector store created successfully")
|
244 |
+
|
245 |
+
except Exception as e:
|
246 |
+
|
247 |
+
print(f"Error creating vector store: {str(e)}")
|
248 |
+
|
249 |
+
|
250 |
+
def setup_retriever(self, k=5, similarity_threshold=0.76):
|
251 |
+
|
252 |
+
self.retriever = st.session_state.vectorstore.as_retriever(k=k)
|
253 |
+
|
254 |
+
splitter = CharacterTextSplitter(chunk_size=300, chunk_overlap=0, separator=". ")
|
255 |
+
|
256 |
+
redundant_filter = EmbeddingsRedundantFilter(embeddings=self.setup_embeddings())
|
257 |
+
|
258 |
+
relevant_filter = EmbeddingsFilter(embeddings=self.setup_embeddings(), similarity_threshold=similarity_threshold)
|
259 |
+
|
260 |
+
pipeline_compressor = DocumentCompressorPipeline(
|
261 |
+
|
262 |
+
transformers=[splitter, redundant_filter, relevant_filter]
|
263 |
+
|
264 |
+
)
|
265 |
+
|
266 |
+
st.session_state.compression_retriever = ContextualCompressionRetriever(base_compressor=pipeline_compressor, base_retriever=self.retriever)
|
267 |
+
|
268 |
+
|
269 |
+
def create_retrieval_chain(self):
|
270 |
+
|
271 |
+
rag_prompt = hub.pull("langchain-ai/retrieval-qa-chat")
|
272 |
+
|
273 |
+
combine_docs_chain = create_stuff_documents_chain(self.llm, rag_prompt)
|
274 |
+
|
275 |
+
self.high_retrieval_chain = create_retrieval_chain(st.session_state.compression_retriever, combine_docs_chain)
|
276 |
+
|
277 |
+
self.low_retrieval_chain = create_retrieval_chain(self.retriever, combine_docs_chain)
|
278 |
+
|
279 |
+
|
280 |
+
|
281 |
+
def setup_tts(self, model_name="tts_models/en/ljspeech/fast_pitch"):
|
282 |
+
|
283 |
+
self.tts = TTS(model_name=model_name, progress_bar=False, vocoder_path='vocoder_models/en/ljspeech/univnet')
|
284 |
+
|
285 |
+
|
286 |
+
def setup_speech_recognition(self):
|
287 |
+
|
288 |
+
self.recognizer = sr.Recognizer()
|
289 |
+
|
290 |
+
|
291 |
+
def setup_folders(self):
|
292 |
+
|
293 |
+
self.dirs = ["test_input", "vectorstore", "test"]
|
294 |
+
|
295 |
+
for d in self.dirs:
|
296 |
+
|
297 |
+
os.makedirs(d, exist_ok=True)
|
298 |
+
|
299 |
+
|
300 |
+
def send_message(self, message, web=False):
|
301 |
+
|
302 |
+
message_result = self.llm.chat(message, web_search=web)
|
303 |
+
|
304 |
+
return message_result.wait_until_done()
|
305 |
+
|
306 |
+
|
307 |
+
def stream_response(self, message, web=False, stream=False):
|
308 |
+
|
309 |
+
responses = []
|
310 |
+
|
311 |
+
for resp in self.llm.query(message, stream=stream, web_search=web):
|
312 |
+
|
313 |
+
responses.append(resp['token'])
|
314 |
+
|
315 |
+
return ' '.join(responses)
|
316 |
+
|
317 |
+
|
318 |
+
def web_search(self, text):
|
319 |
+
|
320 |
+
result = self.send_message(text, web=True)
|
321 |
+
|
322 |
+
return result
|
323 |
+
|
324 |
+
|
325 |
+
def retrieve_context(self, query: str):
|
326 |
+
|
327 |
+
context = []
|
328 |
+
|
329 |
+
lowres = self.retriever._get_relevant_documents(query)
|
330 |
+
|
331 |
+
highres = st.session_state.compression_retriever.get_relevant_documents(query)
|
332 |
+
|
333 |
+
context = "\n".join([doc.page_content for doc in lowres + highres])
|
334 |
+
|
335 |
+
return context
|
336 |
+
|
337 |
+
|
338 |
+
def get_conversation_chain(self):
|
339 |
+
|
340 |
+
EMAIL = os.getenv("EMAIL")
|
341 |
+
|
342 |
+
PASSWD = os.getenv("PASSWD")
|
343 |
+
|
344 |
+
model = 1
|
345 |
+
|
346 |
+
self.llm = LLMChatBot(EMAIL, PASSWD, default_llm=model)
|
347 |
+
self.llm.create_new_conversation(system_prompt=self.llm.default_system_prompt, switch_to=True)
|
348 |
+
|
349 |
+
memory = ConversationBufferMemory(memory_key='chat_history', return_messages=True)
|
350 |
+
|
351 |
+
conversation_chain = ConversationalRetrievalChain.from_llm(
|
352 |
+
|
353 |
+
llm=self.llm,
|
354 |
+
|
355 |
+
retriever=st.session_state.vectorstore.as_retriever(),
|
356 |
+
|
357 |
+
memory=memory
|
358 |
+
|
359 |
+
)
|
360 |
+
|
361 |
+
return conversation_chain
|
362 |
+
|
363 |
+
async def handle_user_input(self, user_input):
|
364 |
+
|
365 |
+
response = st.session_state.conversation({'question': user_input})
|
366 |
+
|
367 |
+
st.session_state.chat_history = response['chat_history']
|
368 |
+
|
369 |
+
|
370 |
+
|
371 |
+
for i, message in enumerate(st.session_state.chat_history):
|
372 |
+
|
373 |
+
if i % 2 == 0:
|
374 |
+
|
375 |
+
st.write(f"Human: {message.content}")
|
376 |
+
|
377 |
+
else:
|
378 |
+
|
379 |
+
st.write(f"AI: {message.content}")
|
380 |
+
|
381 |
+
if st.session_state.voice_mode:
|
382 |
+
|
383 |
+
self.text_to_speech(message.content)
|
384 |
+
|
385 |
+
def clone_github_repo(self, repo_url, local_path='./repo'):
|
386 |
+
|
387 |
+
if os.path.exists(local_path):
|
388 |
+
|
389 |
+
st.write("Repository already cloned.")
|
390 |
+
|
391 |
+
return local_path
|
392 |
+
|
393 |
+
Repo.clone_from(repo_url, local_path)
|
394 |
+
|
395 |
+
return local_path
|
396 |
+
|
397 |
+
|
398 |
+
def glob_recursive_multiple_extensions(base_dir, extensions):
|
399 |
+
|
400 |
+
all_files = []
|
401 |
+
|
402 |
+
for ext in extensions:
|
403 |
+
|
404 |
+
pattern = os.path.join(base_dir, '**', f'*.{ext}')
|
405 |
+
|
406 |
+
files = glob(pattern, recursive=True)
|
407 |
+
|
408 |
+
all_files.extend(files)
|
409 |
+
|
410 |
+
return all_files
|
411 |
+
|
412 |
+
|
413 |
+
def load_documents_from_github(self, repo_url, file_types=['*.py', '*.md', '*.txt', '*.html']):
|
414 |
+
|
415 |
+
local_repo_path = self.clone_github_repo(repo_url)
|
416 |
+
|
417 |
+
globber=f"**/*/{{{','.join(file_types)}}}"
|
418 |
+
|
419 |
+
rp(globber)
|
420 |
+
|
421 |
+
loader = DirectoryLoader(path=local_repo_path, glob=globber, show_progress=True, recursive=True,loader_cls=TextLoader)
|
422 |
+
|
423 |
+
loaded_files = loader.load()
|
424 |
+
|
425 |
+
st.write(f"Nr. files loaded: {len(loaded_files)}")
|
426 |
+
|
427 |
+
print(f"Loaded files: {len(loaded_files)}") # Debug print
|
428 |
+
|
429 |
+
# Convert the loaded files to Document objects
|
430 |
+
|
431 |
+
documents = [Document(page_content=file_content) for file_content in loaded_files]
|
432 |
+
|
433 |
+
print(f"Documents: {documents}") # Debug print
|
434 |
+
|
435 |
+
return documents
|
436 |
+
|
437 |
+
|
438 |
+
def split_documents(self, documents, chunk_s=512, chunk_o=0):
|
439 |
+
|
440 |
+
split_docs = []
|
441 |
+
|
442 |
+
splitter=None
|
443 |
+
|
444 |
+
for doc in documents:
|
445 |
+
|
446 |
+
ext = os.path.splitext(getattr(doc, 'source', '') or getattr(doc, 'filename', ''))[1].lower()
|
447 |
+
|
448 |
+
if ext == '.py':
|
449 |
+
|
450 |
+
splitter = RecursiveCharacterTextSplitter.from_language(language=Language.PYTHON, chunk_size=chunk_s, chunk_overlap=chunk_o)
|
451 |
+
|
452 |
+
elif ext in ['.md', '.markdown']:
|
453 |
+
|
454 |
+
splitter = RecursiveCharacterTextSplitter.from_language(language=Language.MARKDOWN, chunk_size=chunk_s, chunk_overlap=chunk_o)
|
455 |
+
|
456 |
+
elif ext in ['.html', '.htm']:
|
457 |
+
|
458 |
+
splitter = RecursiveCharacterTextSplitter.from_language(language=Language.HTML, chunk_size=chunk_s, chunk_overlap=chunk_o)
|
459 |
+
|
460 |
+
else:
|
461 |
+
|
462 |
+
splitter = RecursiveCharacterTextSplitter(chunk_size=chunk_s, chunk_overlap=chunk_o)
|
463 |
+
|
464 |
+
split_docs.extend(splitter.split_documents([doc]))
|
465 |
+
|
466 |
+
return split_docs, splitter
|
467 |
+
|
468 |
+
|
469 |
+
def visualize_vectorstore(self):
|
470 |
+
|
471 |
+
if st.session_state.vectorstore is None:
|
472 |
+
|
473 |
+
st.write("Vectorstore is not initialized.")
|
474 |
+
|
475 |
+
return
|
476 |
+
|
477 |
+
documents = st.session_state.vectorstore.get_all_documents()
|
478 |
+
|
479 |
+
embeddings = [doc.embedding for doc in documents]
|
480 |
+
|
481 |
+
pca = PCA(n_components=3)
|
482 |
+
|
483 |
+
embeddings_3d = pca.fit_transform(embeddings)
|
484 |
+
|
485 |
+
scaler = MinMaxScaler()
|
486 |
+
|
487 |
+
embeddings_3d_normalized = scaler.fit_transform(embeddings_3d)
|
488 |
+
|
489 |
+
colors = embeddings_3d_normalized[:, 0]
|
490 |
+
|
491 |
+
hover_text = [f"Document {i}:<br>{doc.page_content[:100]}..." for i, doc in enumerate(documents)]
|
492 |
+
|
493 |
+
fig = go.Figure(data=[go.Scatter3d(
|
494 |
+
|
495 |
+
x=embeddings_3d_normalized[:, 0],
|
496 |
+
|
497 |
+
y=embeddings_3d_normalized[:, 1],
|
498 |
+
|
499 |
+
z=embeddings_3d_normalized[:, 2],
|
500 |
+
|
501 |
+
mode='markers',
|
502 |
+
|
503 |
+
marker=dict(
|
504 |
+
|
505 |
+
size=5,
|
506 |
+
|
507 |
+
color=colors,
|
508 |
+
|
509 |
+
colorscale='Viridis',
|
510 |
+
|
511 |
+
opacity=0.8
|
512 |
+
|
513 |
+
),
|
514 |
+
|
515 |
+
text=hover_text,
|
516 |
+
|
517 |
+
hoverinfo='text'
|
518 |
+
|
519 |
+
)])
|
520 |
+
|
521 |
+
|
522 |
+
fig.update_layout(
|
523 |
+
|
524 |
+
title="Interactive 3D Vectorstore Document Distribution",
|
525 |
+
|
526 |
+
scene=dict(
|
527 |
+
|
528 |
+
xaxis_title="PCA Component 1",
|
529 |
+
|
530 |
+
yaxis_title="PCA Component 2",
|
531 |
+
|
532 |
+
zaxis_title="PCA Component 3"
|
533 |
+
|
534 |
+
),
|
535 |
+
|
536 |
+
width=800,
|
537 |
+
|
538 |
+
height=600,
|
539 |
+
|
540 |
+
)
|
541 |
+
|
542 |
+
st.plotly_chart(fig)
|
543 |
+
|
544 |
+
|
545 |
+
def chatbot_page(self):
|
546 |
+
|
547 |
+
st.title("Chatbot")
|
548 |
+
|
549 |
+
# Toggle for voice mode
|
550 |
+
|
551 |
+
st.session_state.voice_mode = st.toggle("Voice Mode")
|
552 |
+
|
553 |
+
# File uploader for context injection
|
554 |
+
|
555 |
+
uploaded_file = st.file_uploader("Choose a file for context injection")
|
556 |
+
|
557 |
+
if uploaded_file is not None:
|
558 |
+
|
559 |
+
documents = [uploaded_file.read().decode()]
|
560 |
+
|
561 |
+
st.session_state.vectorstore = self.create_vector_store(documents)
|
562 |
+
|
563 |
+
st.session_state.conversation = self.get_conversation_chain()
|
564 |
+
|
565 |
+
# GitHub repository URL input
|
566 |
+
|
567 |
+
repo_url = st.text_input("Enter GitHub repository URL")
|
568 |
+
|
569 |
+
if repo_url:
|
570 |
+
|
571 |
+
documents = self.load_documents_from_github(repo_url)
|
572 |
+
|
573 |
+
split_docs, _ = self.split_documents(documents)
|
574 |
+
|
575 |
+
st.session_state.vectorstore = self.create_vector_store(split_docs)
|
576 |
+
|
577 |
+
st.session_state.conversation = self.get_conversation_chain()
|
578 |
+
|
579 |
+
# Chat interface
|
580 |
+
|
581 |
+
user_input = st.text_input("You: ", key="user_input")
|
582 |
+
|
583 |
+
if user_input:
|
584 |
+
|
585 |
+
asyncio.run(self.handle_user_input(user_input))
|
586 |
+
|
587 |
+
if st.session_state.voice_mode:
|
588 |
+
|
589 |
+
if st.button("Speak"):
|
590 |
+
|
591 |
+
user_speech = self.speech_to_text()
|
592 |
+
|
593 |
+
st.text_input("You: ", value=user_speech, key="user_speech_input")
|
594 |
+
|
595 |
+
if user_speech != "Sorry, I didn't catch that.":
|
596 |
+
|
597 |
+
asyncio.run(self.handle_user_input(user_speech))
|
598 |
+
|
599 |
+
|
600 |
+
def dashboard_page(self):
|
601 |
+
|
602 |
+
st.title("Dashboard")
|
603 |
+
|
604 |
+
|
605 |
+
if st.session_state.vectorstore is not None:
|
606 |
+
|
607 |
+
st.write("Vectorstore Visualization")
|
608 |
+
|
609 |
+
self.visualize_vectorstore()
|
610 |
+
|
611 |
+
else:
|
612 |
+
|
613 |
+
st.write("Vectorstore is not initialized. Please add documents in the Chatbot page.")
|
614 |
+
|
615 |
+
|
616 |
+
def main(self):
|
617 |
+
|
618 |
+
st.set_page_config(page_title="Enhanced Multi-page Chatbot App", layout="wide")
|
619 |
+
|
620 |
+
# Sidebar navigation
|
621 |
+
|
622 |
+
with st.sidebar:
|
623 |
+
|
624 |
+
selected = option_menu(
|
625 |
+
|
626 |
+
menu_title="Navigation",
|
627 |
+
|
628 |
+
options=["Chatbot", "Dashboard"],
|
629 |
+
|
630 |
+
icons=["chat", "bar-chart"],
|
631 |
+
|
632 |
+
menu_icon="cast",
|
633 |
+
|
634 |
+
default_index=0,
|
635 |
+
|
636 |
+
)
|
637 |
+
|
638 |
+
if selected == "Chatbot":
|
639 |
+
|
640 |
+
self.chatbot_page()
|
641 |
+
|
642 |
+
elif selected == "Dashboard":
|
643 |
+
|
644 |
+
self.dashboard_page()
|
645 |
+
|
646 |
+
|
647 |
+
if __name__ == "__main__":
|
648 |
+
|
649 |
+
app = ChatbotApp(os.getenv("EMAIL"),os.getenv("PASSWD"))
|
650 |
+
|
651 |
+
app.main()
|
652 |
+
#https://www.linkedin.com/pulse/multi-type-ragollama31-405b-chatbot-boudewijn-kooy-t5lue/?trackingId=Q5pqCmYoQYGWkbViMWtqLQ%3D%3D
|