# Here is one of the many custom scripts i build. # Costs to use it is exactly 0 # Even runs with llama3.1 70B or 405B..and few more... import streamlit as st from llm_chatbot import LLMChatBot from streamlit_option_menu import option_menu import speech_recognition as sr import pyttsx3 import os import getpass from uuid import uuid4 import faiss import numpy as np import requests import io import warnings import torch import pickle import asyncio import json from git import Repo from rich import print as rp from typing import Union, List, Generator, Any, Mapping, Optional, Dict from requests.sessions import RequestsCookieJar from dotenv import load_dotenv, find_dotenv from langchain import hub from langchain_core.documents import Document from langchain.chains.combine_documents import create_stuff_documents_chain from langchain.chains import create_retrieval_chain from langchain_community.document_loaders import DirectoryLoader from langchain.text_splitter import RecursiveCharacterTextSplitter, Language from langchain_huggingface import HuggingFaceEmbeddings from langchain_community.vectorstores import Chroma, FAISS from langchain.vectorstores.base import VectorStore from langchain.retrievers import MultiQueryRetriever from langchain.retrievers.self_query.base import SelfQueryRetriever from langchain.llms import BaseLLM from langchain.retrievers import ContextualCompressionRetriever from langchain.retrievers.document_compressors import LLMChainExtractor from langchain.retrievers.document_compressors import DocumentCompressorPipeline from langchain_community.document_transformers import EmbeddingsRedundantFilter from langchain_text_splitters import CharacterTextSplitter from langchain.retrievers.document_compressors import EmbeddingsFilter from langchain.memory.buffer import ConversationBufferMemory from langchain.chains import StuffDocumentsChain, LLMChain, ConversationalRetrievalChain from uber_toolkit_class import UberToolkit from glob import glob import numpy as np import pandas as pd import plotly.graph_objects as go import plotly.express as px from plotly.subplots import make_subplots import plotly.io as pio from sklearn.decomposition import PCA from sklearn.preprocessing import MinMaxScaler from langchain_core.documents import Document from scipy.stats import gaussian_kde from huggingface_hub import InferenceClient from hugchat import hugchat from hugchat.login import Login from hugchat.message import Message from hugchat.types.assistant import Assistant from hugchat.types.model import Model from hugchat.types.message import MessageNode, Conversation from langchain_community.document_loaders import TextLoader from TTS.api import TTS import time from playsound import playsound from system_prompts import __all__ as prompts from profiler import VoiceProfileManager, VoiceProfile # Load environment variables load_dotenv(find_dotenv()) class ChatbotApp: def __init__(self, email, password, default_llm=1): self.email = email self.password = password self.default_llm = default_llm self.embeddings = HuggingFaceEmbeddings( model_name="all-MiniLM-L6-v2", model_kwargs={'device': 'cpu'}, encode_kwargs={'normalize_embeddings': True} ) self.vectorstore = None def create_vectorstore_from_github(self): repo_url = "YOUR_REPO_URL" local_repo_path = self.clone_github_repo(repo_url) loader = DirectoryLoader(path=local_repo_path, glob=f"**/*", show_progress=True, recursive=True) loaded_files = loader.load() documents = [Document(page_content=file_content) for file_content in loaded_files] text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=0) split_documents = text_splitter.split_documents(documents) texts = [doc.page_content for doc in split_documents] print(f"Texts for embedding: {texts}") # Debug print self.vectorstore = FAISS.from_texts(texts, self.embeddings) def create_vectorstore(self, docs): text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=0) # Wrap text content in Document objects documents = [Document(page_content=doc) for doc in docs] # Split documents using the text splitter split_documents = text_splitter.split_documents(documents) # Convert split documents back to plain text texts = [doc.page_content for doc in split_documents] vectorstore = FAISS.from_texts(texts, self.setup_embeddings()) return vectorstore def setup_session_state(self): if 'chat_history' not in st.session_state: st.session_state.chat_history = [] if 'voice_mode' not in st.session_state: st.session_state.voice_mode = False if 'vectorstore' not in st.session_state: st.session_state.vectorstore = None if 'retriever' not in st.session_state: st.session_state.retriever = None if 'compression_retriever' not in st.session_state: st.session_state.compression_retriever = None def text_to_speech(self, text): self.engine.say(text) self.engine.runAndWait() def speech_to_text(self): r = sr.Recognizer() with sr.Microphone() as source: st.write("Listening...") audio = r.listen(source) try: text = r.recognize_google(audio) return text except: return "Sorry, I didn't catch that." def setup_embeddings(self): return HuggingFaceEmbeddings( model_name="all-MiniLM-L6-v2", model_kwargs={'device': 'cpu'}, encode_kwargs={'normalize_embeddings': True} ) def create_vector_store(self, docs): text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=0) # Wrap text content in Document objects documents = [Document(page_content=doc) for doc in docs] # Split documents using the text splitter split_documents = text_splitter.split_documents(documents) print(f"Split documents: {split_documents}") # Debug print # Convert split documents back to plain text texts = [doc.page_content for doc in split_documents] print(f"Texts: {texts}") # Debug print if not texts: print("No valid texts found for embedding. Check your repository content.") return try: self.vectorstore = FAISS.from_texts(texts, self.embeddings) print("Vector store created successfully") except Exception as e: print(f"Error creating vector store: {str(e)}") def setup_retriever(self, k=5, similarity_threshold=0.76): self.retriever = st.session_state.vectorstore.as_retriever(k=k) splitter = CharacterTextSplitter(chunk_size=300, chunk_overlap=0, separator=". ") redundant_filter = EmbeddingsRedundantFilter(embeddings=self.setup_embeddings()) relevant_filter = EmbeddingsFilter(embeddings=self.setup_embeddings(), similarity_threshold=similarity_threshold) pipeline_compressor = DocumentCompressorPipeline( transformers=[splitter, redundant_filter, relevant_filter] ) st.session_state.compression_retriever = ContextualCompressionRetriever(base_compressor=pipeline_compressor, base_retriever=self.retriever) def create_retrieval_chain(self): rag_prompt = hub.pull("langchain-ai/retrieval-qa-chat") combine_docs_chain = create_stuff_documents_chain(self.llm, rag_prompt) self.high_retrieval_chain = create_retrieval_chain(st.session_state.compression_retriever, combine_docs_chain) self.low_retrieval_chain = create_retrieval_chain(self.retriever, combine_docs_chain) def setup_tts(self, model_name="tts_models/en/ljspeech/fast_pitch"): self.tts = TTS(model_name=model_name, progress_bar=False, vocoder_path='vocoder_models/en/ljspeech/univnet') def setup_speech_recognition(self): self.recognizer = sr.Recognizer() def setup_folders(self): self.dirs = ["test_input", "vectorstore", "test"] for d in self.dirs: os.makedirs(d, exist_ok=True) def send_message(self, message, web=False): message_result = self.llm.chat(message, web_search=web) return message_result.wait_until_done() def stream_response(self, message, web=False, stream=False): responses = [] for resp in self.llm.query(message, stream=stream, web_search=web): responses.append(resp['token']) return ' '.join(responses) def web_search(self, text): result = self.send_message(text, web=True) return result def retrieve_context(self, query: str): context = [] lowres = self.retriever._get_relevant_documents(query) highres = st.session_state.compression_retriever.get_relevant_documents(query) context = "\n".join([doc.page_content for doc in lowres + highres]) return context def get_conversation_chain(self): EMAIL = os.getenv("EMAIL") PASSWD = os.getenv("PASSWD") model = 1 self.llm = LLMChatBot(EMAIL, PASSWD, default_llm=model) self.llm.create_new_conversation(system_prompt=self.llm.default_system_prompt, switch_to=True) memory = ConversationBufferMemory(memory_key='chat_history', return_messages=True) conversation_chain = ConversationalRetrievalChain.from_llm( llm=self.llm, retriever=st.session_state.vectorstore.as_retriever(), memory=memory ) return conversation_chain async def handle_user_input(self, user_input): response = st.session_state.conversation({'question': user_input}) st.session_state.chat_history = response['chat_history'] for i, message in enumerate(st.session_state.chat_history): if i % 2 == 0: st.write(f"Human: {message.content}") else: st.write(f"AI: {message.content}") if st.session_state.voice_mode: self.text_to_speech(message.content) def clone_github_repo(self, repo_url, local_path='./repo'): if os.path.exists(local_path): st.write("Repository already cloned.") return local_path Repo.clone_from(repo_url, local_path) return local_path def glob_recursive_multiple_extensions(base_dir, extensions): all_files = [] for ext in extensions: pattern = os.path.join(base_dir, '**', f'*.{ext}') files = glob(pattern, recursive=True) all_files.extend(files) return all_files def load_documents_from_github(self, repo_url, file_types=['*.py', '*.md', '*.txt', '*.html']): local_repo_path = self.clone_github_repo(repo_url) globber=f"**/*/{{{','.join(file_types)}}}" rp(globber) loader = DirectoryLoader(path=local_repo_path, glob=globber, show_progress=True, recursive=True,loader_cls=TextLoader) loaded_files = loader.load() st.write(f"Nr. files loaded: {len(loaded_files)}") print(f"Loaded files: {len(loaded_files)}") # Debug print # Convert the loaded files to Document objects documents = [Document(page_content=file_content) for file_content in loaded_files] print(f"Documents: {documents}") # Debug print return documents def split_documents(self, documents, chunk_s=512, chunk_o=0): split_docs = [] splitter=None for doc in documents: ext = os.path.splitext(getattr(doc, 'source', '') or getattr(doc, 'filename', ''))[1].lower() if ext == '.py': splitter = RecursiveCharacterTextSplitter.from_language(language=Language.PYTHON, chunk_size=chunk_s, chunk_overlap=chunk_o) elif ext in ['.md', '.markdown']: splitter = RecursiveCharacterTextSplitter.from_language(language=Language.MARKDOWN, chunk_size=chunk_s, chunk_overlap=chunk_o) elif ext in ['.html', '.htm']: splitter = RecursiveCharacterTextSplitter.from_language(language=Language.HTML, chunk_size=chunk_s, chunk_overlap=chunk_o) else: splitter = RecursiveCharacterTextSplitter(chunk_size=chunk_s, chunk_overlap=chunk_o) split_docs.extend(splitter.split_documents([doc])) return split_docs, splitter def visualize_vectorstore(self): if st.session_state.vectorstore is None: st.write("Vectorstore is not initialized.") return documents = st.session_state.vectorstore.get_all_documents() embeddings = [doc.embedding for doc in documents] pca = PCA(n_components=3) embeddings_3d = pca.fit_transform(embeddings) scaler = MinMaxScaler() embeddings_3d_normalized = scaler.fit_transform(embeddings_3d) colors = embeddings_3d_normalized[:, 0] hover_text = [f"Document {i}:
{doc.page_content[:100]}..." for i, doc in enumerate(documents)] fig = go.Figure(data=[go.Scatter3d( x=embeddings_3d_normalized[:, 0], y=embeddings_3d_normalized[:, 1], z=embeddings_3d_normalized[:, 2], mode='markers', marker=dict( size=5, color=colors, colorscale='Viridis', opacity=0.8 ), text=hover_text, hoverinfo='text' )]) fig.update_layout( title="Interactive 3D Vectorstore Document Distribution", scene=dict( xaxis_title="PCA Component 1", yaxis_title="PCA Component 2", zaxis_title="PCA Component 3" ), width=800, height=600, ) st.plotly_chart(fig) def chatbot_page(self): st.title("Chatbot") # Toggle for voice mode st.session_state.voice_mode = st.toggle("Voice Mode") # File uploader for context injection uploaded_file = st.file_uploader("Choose a file for context injection") if uploaded_file is not None: documents = [uploaded_file.read().decode()] st.session_state.vectorstore = self.create_vector_store(documents) st.session_state.conversation = self.get_conversation_chain() # GitHub repository URL input repo_url = st.text_input("Enter GitHub repository URL") if repo_url: documents = self.load_documents_from_github(repo_url) split_docs, _ = self.split_documents(documents) st.session_state.vectorstore = self.create_vector_store(split_docs) st.session_state.conversation = self.get_conversation_chain() # Chat interface user_input = st.text_input("You: ", key="user_input") if user_input: asyncio.run(self.handle_user_input(user_input)) if st.session_state.voice_mode: if st.button("Speak"): user_speech = self.speech_to_text() st.text_input("You: ", value=user_speech, key="user_speech_input") if user_speech != "Sorry, I didn't catch that.": asyncio.run(self.handle_user_input(user_speech)) def dashboard_page(self): st.title("Dashboard") if st.session_state.vectorstore is not None: st.write("Vectorstore Visualization") self.visualize_vectorstore() else: st.write("Vectorstore is not initialized. Please add documents in the Chatbot page.") def main(self): st.set_page_config(page_title="Enhanced Multi-page Chatbot App", layout="wide") # Sidebar navigation with st.sidebar: selected = option_menu( menu_title="Navigation", options=["Chatbot", "Dashboard"], icons=["chat", "bar-chart"], menu_icon="cast", default_index=0, ) if selected == "Chatbot": self.chatbot_page() elif selected == "Dashboard": self.dashboard_page() if __name__ == "__main__": app = ChatbotApp(os.getenv("EMAIL"),os.getenv("PASSWD")) app.main() #https://www.linkedin.com/pulse/multi-type-ragollama31-405b-chatbot-boudewijn-kooy-t5lue/?trackingId=Q5pqCmYoQYGWkbViMWtqLQ%3D%3D